Large Air Cooled Generator Failure

Henry Tarnecky
AVP - Sr. Engineering Specialist, FM Global
2017 IRIS Rotating Machinery Conference
FM Global Basics

- Commercial/Industrial Property Insurer
- Mutual Co., founded in 1835 in USA
- 5,300 employees including 1,800 engineers
- Global – 66 offices serving clients in ~150 countries
- Clients – large organizations, 30% Fortune 1000
Zachariah Allen – Founder

Textile manufacturer, scientist, lawyer, writer, inventor and civil leader
FM Global Basics

- Chemical
- Pharma
- Mining
- Molten Materials
- Power Gen
- Pulp and Paper
- Semiconductor
FM Global Difference

- “The Majority of Loss is Preventable”
- Mutual with Specialty Focus
- Engineering Services
- Global Product Delivery
- Outstanding Claims Service
- Strong Client Partnerships
- Business Risk Consulting
Loss Prevention Resources

- Dedicated Client Service Team
- Data Sheets
- Specialist Loss Prevention Engineers
- Subject Matter Experts & Industrial Principle Engineers
- Research
- Training (on site, corporate)
- Approval
Outline - This Presentation

- Generator Failure Case Study
- FM Global Loss Prevention Strategy for Generators
Case Study-Generator Failure

- **Site Information**
 - 600 MW - 2x1 Combined Cycle Plant – (2) CT’s & (1) Stm Turbine
 - Cycled 7am to 11pm Monday thru Friday
 - Commissioned in 2005
 - Can operate 1X1 or bypass Stm Turbine @ reduced load
Case Study-Generator Failure

- The Unit
 - 255 MW, 21 kV - 2 pole, air cooled, 60HZ
 - Steam turbine driven
 - Satisfactory acceptance testing @ commissioning
 - Manufactured in 2005
 - 15,000 hours (625 days) of operation at the time of the incident with no significant previous issues
Case Study-Generator Failure

- Unit trips offline suddenly – reportedly differential relay trip (modern digital multi relay package installed)

- Condition assessed by operators and restart attempted three more times – relay tripped each time

- Turbine/Generator secured for damage investigation

- All vital parties notified (Management, OEM, Insurance etc.)
Severe arc fault damage top bar #4 at phase lead connection
Case Study-Generator Failure

- **Damage assessment:**
 - Stator arc fault damage to “B” phase top bar # 4 insulation noting cracked phase connection (exciter end) flashed over to ‘C” phase
 - Operator restart attempts caused more severe arc fault damage and end winding physical movement after the initial fault
 - Resulted in retaining ring, rotor forging & field coil overheating & metal loss damage
11 o’clock positon where initial arc flash over occurred
Other as found blocking & phase lead connection exciter end
Phase lead blocking - note poor taping and displaced wedge.
Stator Damage Map – Exciter End

- Bar 4 Failed
 - Loose Blocking
 - (Blocking showed long term signs of vibration)

- Bar 13
 - Blocking Tight
 - No Cracks Noted

- Bar 37
 - Top
 - Neutral

- Bar 28
 - Top
 - Neutral
 - Bar 49
 - Blocking Tight
 - No Cracks Noted

- Bar 40
 - Two Cracks
 - Loose Blocking
 - (Blocking could have some loose during fault)
 - Mixed Mode cracking
 - Intergranular and intragranular
 - ~50,000 amps fault current
 - Also known as CTL Sample

- Bar 43
 - Top
 - Neutral

- Bar 22
 - Top
 - Neutral
 - Bar 1
 - Top
 - Neutral
 - Bar 10

- Bar 31
 - Top
 - Neutral
 - Bar 31
 - Two Cracks
 - No Blocking
 - Single Mode cracking Intergranular
 - ~25,000 amps fault current
 - Also known as LPI sample

- Bar 4
 - Top
 - Neutral

- A (T1)
 - Top
 - Neutral

- B (T2)
 - Top
 - Neutral

- C (T3)
 - Top
 - Neutral

- Terminal

- Bot

- Bot
• Found 4 of 6 phase lead connections cracked in the strand braze area where loose or no blocking evident

• Phase lead connections with secure blocking were not cracked

• Long term insulation vibration wear at failed bar # 4 noted

• Bump test found signs of 120 HZ resonance present in end winding suggesting “High Cycle Fatigue”

• Suspect rotor/field & retaining ring arc fault damage (removed for off site evaluation - repair)
“Phase lead connection crack”
(copper lug brazed to the bar end - then trapezoidal intermediate piece & circular phase ring)
Stator - poor strand to phase lead braze connections
Retaining Ring Removed from Rotor at Repair Shop (exciter end)
Retaining Ring & Rotor damage assessment:

- The retaining ring on the exciter end sustained arcing damage at the taper end.

- Splatter debris was found throughout the rotor.

- Ground fault (arching damage) at exciter end through the damper winding to ground on the face of the slot tooth between coils 1 and 2 & on the same coil on the exact opposite side.

- Arc damage was also found on inboard pole coil Nos. 1 and 2 and outboard pole @ coil No. 1.

- Arc damage was found on a tooth on the forging.
Retaining ring inside surfaces

Severe arc fault metal loss & overheating damage – ring required replacement becoming long lead time item
Rotor coil and forging arc fault damage (exciter end)
Rotor Repair – off site

- The rotor weighed approximately 130,000 lbs. and was considered a “super load”.

- Regulations about transporting a super load are strict requiring special permits and caused delays.

- Rotor became the critical path in terms of reassembling the generator. (4 months & 5 days later)

- Locating a replacement retaining ring was critical long lead item
Case Study-Generator Failure - Cause

- Root Cause - High Cycle Fatigue due to 120 HZ resonance - induced end turn vibration damage

- Contributing Cause - Inferior strand to phase lead braze connections created crack initiation point and accelerated damage time line to failure.
New phase lead connections (H clip - more rugged design)

Original design
More robust end blocking design to reduce vibration
Case Study - Generator Failure

- Lessons learned
 - Validated benefit of
 - Modal Analysis – “Bump Testing” phase lead connections & end winding during acceptance test
 - Improvements:
 - Phase lead braze connections improved
 - End winding support blocking improved and eliminated 120 HZ resonance
 - PD monitoring installed
 - Continuous fiber optic end winding vibration monitoring installed (18 exciter end and 6 on drive end)
Generator Failures-Risk Factors

Environment
Operating conditions
Age/history
Maintenance
Operator training

Operator training, contingency plan, safety device
PM program

- Every generator is different
 - Design or Manufacturing Issues
 - Operating History
 - Base Load vs. Peaking
 - New versus Old
 - Etc…
Recent trend

Condition Based Approach vs Rotor Out Inspection
PM program

- FM Global recommends the following as appropriate:
 - Establish generator electrical testing frequency as well as test scope
 - Install on-line condition monitoring systems and consider robotic inspections
 - Closely manage findings (rate of degradation)
 - If test results or trends indicate high risk - plan remedial action & repairs before an in service failure.
PM program

<table>
<thead>
<tr>
<th>Stator Winding and Core Test</th>
<th>Rotor inspection & test</th>
<th>On-line monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation resistance & polarization index</td>
<td>Insulation resistance/Polarization index (PI)</td>
<td>Partial discharge/EMI</td>
</tr>
<tr>
<td>Power factor</td>
<td>Impedance testing/RSO testing/open circuit test</td>
<td>Flux probe</td>
</tr>
<tr>
<td>Partial Discharge (power factor tip-up)</td>
<td>DC conductivity</td>
<td>Core monitor/RTD</td>
</tr>
<tr>
<td>Core loop test (EL-CID)</td>
<td>Visual inspection</td>
<td>End winding vibration</td>
</tr>
<tr>
<td>Semi-conductive coating resistance</td>
<td>NDE on rotor forging and fan</td>
<td>Hydrogen dew point monitor</td>
</tr>
<tr>
<td>Wedge tightness</td>
<td>NDE retaining ring</td>
<td>Shaft voltage/current</td>
</tr>
<tr>
<td>DC conductivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacitance mapping (water-cooled unit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure/Vacuum decay test (water-cooled unit)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Generator Failures

FM Global Property Loss Prevention Data Sheets

ELECTRIC AC GENERATORS

<table>
<thead>
<tr>
<th>Table of Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 SCOPE</td>
<td>2</td>
</tr>
<tr>
<td>1.1 Changes</td>
<td>2</td>
</tr>
<tr>
<td>2.0 LOSS PREVENTION RECOMMENDATIONS</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Protection</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Equipment and Process Protection</td>
<td>2</td>
</tr>
<tr>
<td>2.3 Operation and Maintenance</td>
<td>2</td>
</tr>
<tr>
<td>2.3.1 In-Service</td>
<td>6</td>
</tr>
<tr>
<td>2.3.2 Condition Monitoring</td>
<td>6</td>
</tr>
<tr>
<td>2.3.3 Generator Disconnect Intervals</td>
<td>7</td>
</tr>
<tr>
<td>2.3.4 Visual Inspection</td>
<td>7</td>
</tr>
<tr>
<td>2.3.5 Testing</td>
<td>7</td>
</tr>
<tr>
<td>2.3.6 Overvoltage (hot spot) testing</td>
<td>7</td>
</tr>
<tr>
<td>3.0 SUPPORT FOR RECOMMENDATIONS</td>
<td>10</td>
</tr>
<tr>
<td>3.1 Visual Indicators</td>
<td>10</td>
</tr>
<tr>
<td>3.2 Generator Tests</td>
<td>11</td>
</tr>
<tr>
<td>3.3 Failure Modes and Abnormal Operating Conditions</td>
<td>15</td>
</tr>
<tr>
<td>3.3.1 Stator</td>
<td>15</td>
</tr>
<tr>
<td>3.3.2 Rotor</td>
<td>16</td>
</tr>
<tr>
<td>3.3.3 Rotor</td>
<td>19</td>
</tr>
<tr>
<td>3.3.4 Mechanical Hazards</td>
<td>20</td>
</tr>
<tr>
<td>3.3.5 Abnormal Electrical Conditions</td>
<td>21</td>
</tr>
<tr>
<td>3.4 Generator ground fault protection</td>
<td>24</td>
</tr>
<tr>
<td>3.5 Condition Monitoring</td>
<td>24</td>
</tr>
<tr>
<td>3.6 Loss History</td>
<td>26</td>
</tr>
<tr>
<td>3.6.1 Loss History with Utility AC Generators</td>
<td>26</td>
</tr>
<tr>
<td>3.6.2 Loss History with Industrial AC Generators</td>
<td>26</td>
</tr>
<tr>
<td>4.0 REFERENCES</td>
<td>27</td>
</tr>
<tr>
<td>4.1 FM Global</td>
<td>27</td>
</tr>
<tr>
<td>4.2 Others</td>
<td>27</td>
</tr>
</tbody>
</table>

HYDROELECTRIC POWER PLANTS

<table>
<thead>
<tr>
<th>Table of Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 SCOPE</td>
<td>2</td>
</tr>
<tr>
<td>1.1 Changes</td>
<td>2</td>
</tr>
<tr>
<td>2.0 LOSS PREVENTION RECOMMENDATIONS</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Electrical</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Operation and Maintenance</td>
<td>2</td>
</tr>
<tr>
<td>2.2.1 Electrical</td>
<td>4</td>
</tr>
<tr>
<td>2.2.2 Mechanical</td>
<td>4</td>
</tr>
<tr>
<td>2.3 Equipment and Processes</td>
<td>4</td>
</tr>
<tr>
<td>2.4 Protection</td>
<td>5</td>
</tr>
<tr>
<td>3.0 SUPPORT FOR RECOMMENDATIONS</td>
<td>6</td>
</tr>
<tr>
<td>3.1 Loss History</td>
<td>6</td>
</tr>
<tr>
<td>4.0 REFERENCES</td>
<td>7</td>
</tr>
<tr>
<td>4.1 FM Global</td>
<td>7</td>
</tr>
<tr>
<td>4.2 Others</td>
<td>7</td>
</tr>
</tbody>
</table>

APPENDIX A GLOSSARY OF TERMS

APPENDIX B DOCUMENT REVISIION HISTORY

APPENDIX C BIBLIOGRAPHY

List of Figures

- Fig. 1: Typical Unit Generator-Transformer Configuration. (Courtesy of IEEE Power Engineering Society.)

List of Tables

- Table 1: Recommended Protective and Alarm Devices for AC Generators
- Table 2: Analysis of Failures in Hydro-Turbines and Generators, 1971 through 1980
- Table 3: Resistance to Pitting of Different Runner Materials
Electrical Protection: The Defense Line

- **FM Global focus**
 - Adequate Relay Protection (ANSI / IEEE C 37.102)
 - Operational As A System (RELAYS, DC BATTERIES, CONTROL WIRING etc.)
 - Operator Response/Training
Conclusion

- **FM Global Loss Prevention Strategy for Generators**
 - Verify Adequate Electrical Protection
 - Emphasize Operating Training
 - Promote Condition Based PM - online monitoring (PD, End winding vibration, flux probe etc.)

FM Global Data Sheet
5-12: Electrical AC Generators
5-19: Switchgear and Circuit Breakers
5-20: Electrical Testing
5-3: Hydro Power Station
7-79: Fire Protection for Gas Turbine and Electric Generators
7-101: Fire Protection for Steam Turbines and Electric Generators