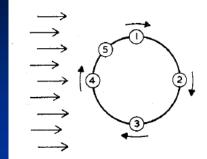
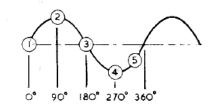
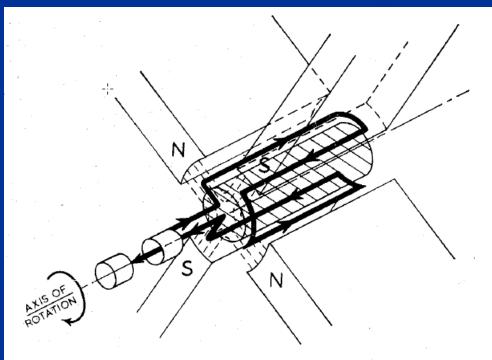
Hydro and Turbine Machines

Rotating Exciters Testing and Repair

Presentation

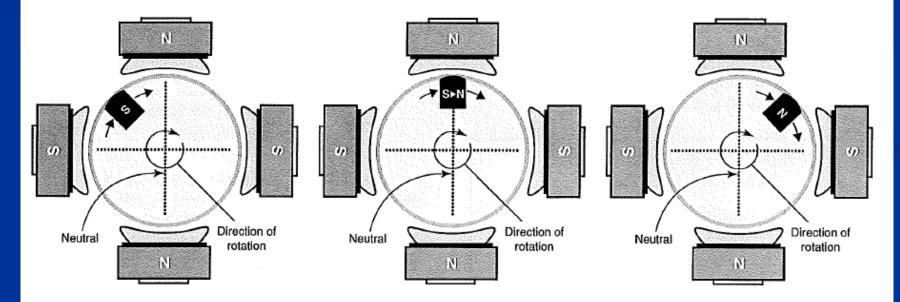

By Igor Chichkin, P.Eng Generation Maintenance (GM) –Electrical Group BC Hydro, British Columbia,Canada


Fundamentals of DC Machine Operation



Two -pole DC machine

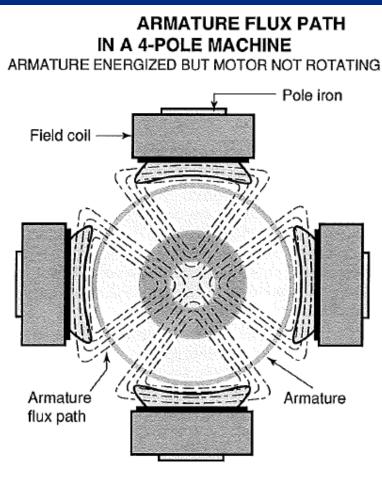
Four-pole DC machine



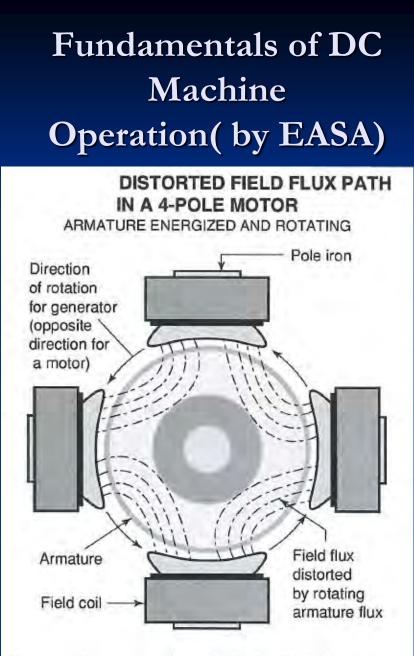
Fundamentals of DC Machine Operation(by EASA)

CHANGING ARMATURE COIL POLARITY TO CREATE ROTATIONAL MOTION

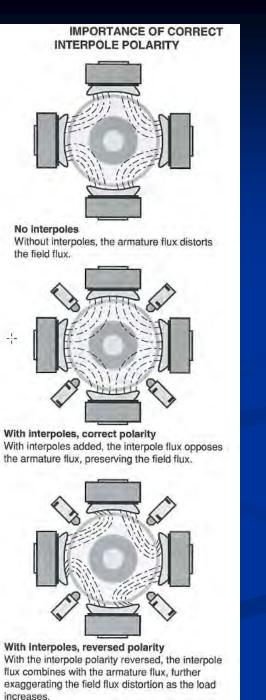
If the DC machine had only one magnet in the armature and its polarity never changed, the polarity of the armature magnet would draw it toward the nearest pole of opposite polarity where it would stop.

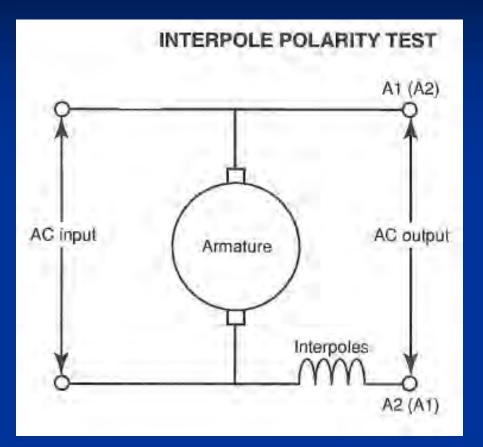


The armature magnet with south polarity is pulled toward the closest north pole while being pushed away from the closest south pole. When the armature magnet reaches the brush neutral position, its polarity is changed from south to north. If the polarity did not change, the armature would stop rotating. The armature magnet, now with north polarity, is pushed away from the closest north pole and pulled toward the next south pole.


Fundamentals of DC Machine Operation(by EASA)

FIELD FLUX PATH IN A 4-POLE MACHINE Field coil Pole iron S 3 Armature Field flux


The flux paths are symmetrical through the armature.

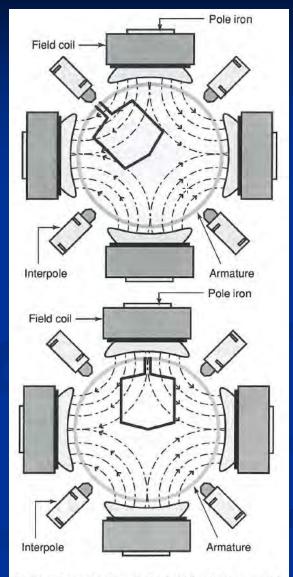

The flux paths are symmetrical through the field poles.

Armature flux passing through the fixed field flux deflects the field flux.

DC machine Interpoles

if Voutput > Vinput
reverse interpoles polarity

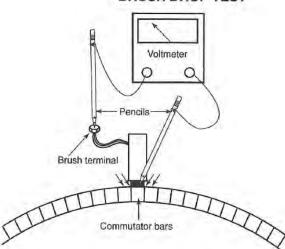
Output Voltage < Input Voltage


Typical Voutput = 1/4 to 2/3 Vinput if interpoles polarity is correct.

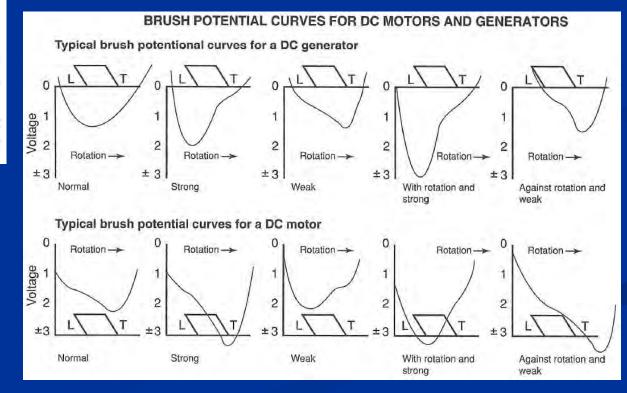
- Interpole polarity should be such that they oppose the magnetic flux of the armature. Low-voltage AC, typically 30-60 volts, can be applied to the armature and interpole circuit to verify correct interpole polarity.
- Apply the voltage to two brushholders of opposite polarity.
- Measure the output voltage on leads A1 and A2 in the terminal box.
 - If the output voltage is less than the input voltage, the interpole polarity is correct. The typical output voltage of correct polarity interpoles is about one-half to two-thirds of the input voltage.
 - If the output voltage is higher than the input voltage, reverse the interpole leads.
 - If the voltages are the same, either the interpoles are disconnected, or the polarity sequence is wrong. Machines with compensating (pole-face) windings will typically develop a very low output voltage.

Fundamentals of DC Machine Operation(EASA)

Electrical Neutral set up ... what does this mean ?


Why it is necessary ?

As the coil passes through the field flux (top), current is induced. When at the neutral position (bottom), no current is flowing in the coil.


Brush Potential Test

BRUSH DROP TEST

Take readings at center of the brush, at leading and trailing edges of the brush, as well as at one-half brush width ahead and one-half brush width behind.

The brush voltage drop curve is obtained by measuring the voltage from the brush terminal to various points on the commutator under the brush. This curve illustrates the current distribution at the brush face and thereby serves as an indicator of the condition of the magnetic field.

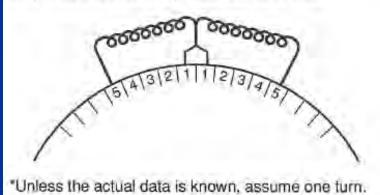
Electrical Apparatus Service Association, Inc.

SURGE COMPARISON TEST EXAMPLE

Each set of bar-to-bar test probes must span an equal number of bars for a meaningful test. Further, the total number of turns being compared must be equal. When an armature is equalized, the sides under test must also contain an equal number of equalizers.

The test voltage also must meet the requirements of Paschen's Law (i.e., at least 350 volts/turn) without exceeding the test voltage for the ground insulation.

(2E + 1000)


Where E = rated armature voltage

For example, a 500 volt armature (with a new or reconditioned winding):

[2(500) + 1000] = 2000 volts

 $\frac{2000 \text{ volts}}{\text{Minimum volts per bar}^*} = \frac{2000 \text{ volts}}{350} = 5.7$

Only 5 bars should be spanned on each side.

2-) COLD STRIP ARMATURE COILS 3-) RECORD WINDING DATA 4-) INCOMING CORE TEST (Attachment A) 5-) SOAK LAMINATIONS IN WATERGLASS SOLUTION AND BAKE 6-) RE- CORE TEST (Attachment B) 7-) INFRARED SCAN "A" 8-) ACID ETCH LAMINATIONS 9-) INFRARED SCAN "B" 10-) FINAL CORE TEST 11-) INSTALL NEW COMMUTATOR - FACTORY TESTS 12-) REWIND ARMATURE 13-) WEDGE 14-) TIG WELD CONNECTIONS 15-) RESIGLASS BAND AND BAKE 16-) VPI AND BAKE ARMATURE - TWO FULL VPI CYCLES 17-) MACHINE AND UNDERCUT COMMUTATOR **18-) COMMUTATOR PROFILE TEST** 19-) APPLY NEW EPOXY STRING BAND 20-) FINAL ELECTRICAL TESTS 21-) DEBURR AND CHAMFER AND POLISH COMMUTATOR 22-) DYNAMIC BALANCE ARMATURE 23-) CRATE AND SHIP

Commutator has been replaced.

Armature core after winding removal.

		DATA E	n heer	4190 - 93rd STREET EDMONTON, ALBERTA T6E 5P5 1-403-450-0303
MFR. Wes	TIN GHOUS DATE!	MAY 16/201	JOB NO.	40340
45	VOLTS 12.5	TYPE	FRAME	TEMP RISE
RPM 200	AMPS 360	MODEL	FORM	SERIAL NO. 07905
WINDING DATA		.140 × .625"	INSULATION CLAS	
NO COMMUTATOR	NO OF SLOTS 58	140 ×0.6.	25" 3.51B	WEOGES PER SLOT
SECTIONS PER	COILS IN SLOTS - 11	WIRES IN PARALLEL	SLOT LINER DeOII'I	WEDGE LENGTH
TURNS PER	LAP OR WAVE WINDING	WIRE TYPE RECTANGUERA	SLOT SPACES	WEDGE TK 12.5-11
NO OF EQUALIZER	EQUALIZER THROW 1-	EQUALIZER A G MEL	INSDE DIAMETER	NO OF TAPPED
24.5625"		DIA 224 3/1 // 224 3/1 // 224 7/5 /	1000	MMUTATOR RISERS
NUMBER OF A			SLOT THROW	NUMBER WIDTH
NUMBER OF COM	-1		AND	0.350
NUMBER OF TAP COILS	(A.C. & Equalizer)			DUCTS DUCTS

Armature Core Loss Test

Core loss test

During the rewind process an armature should be core tested if possible. Although part of a DC machine, the armature is actually an AC winding. The formula for the frequency of a rotating electrical machine AC winding is:

Frequency =
$$\left(\frac{\text{Poles} \times \text{rpm}}{120}\right)$$

If the motor has 4 poles and is rated 2500 rpm, the armature frequency calculation would be:

$$Frequency = \left(\frac{4 \times 2500}{120}\right) = 83.3 \text{ Hz}$$

Note that in this example, the armature frequency is greater than that of typical line frequencies for AC machines. This illustrates the need to be concerned about armature core loss and hot spots.

If a commercial core tester is available, the test current can be passed through the armature shaft. If the loop test method is to be used, the core must have large enough ventilation ducts for the loop leads to pass through, below or within, the core iron. The core test itself will follow the guidelines of EASA Tech Note 17.

COMMUTATOR REPAIR INDICATORS

SITUATION	RUNOUT (TIR*)		NDERCUT	
GITCATION	RUNCUT (TIR*)	BAR-TO-BAR	DEPTH	
NEW	LESS THAN .0015	LESS THAN .0002	.050+	
IN SERVICE	LESS THAN .003	LESS THAN .0003	.020	
NEEDS REPAIR	MORE THAN .003	MORE THAN .0003	.010-	

* • TOTAL INDICATOR READING

ALL VALUES ARE IN INCHES

DC Machines

Section 3

COMMUTATOR MACHINING: TURNING AND UNDERCUTTING

PREPARING THE ARMATURE

Check lightness of commutator bolts (tightening nut) while commutator is hot. Tighten to manufacturer's specifications.	 Make sure bearing seats run true before machining the commutator.
Repair commutator and armature winding as needed.	 Wrap armature winding to keep chips out while machining the commutator.

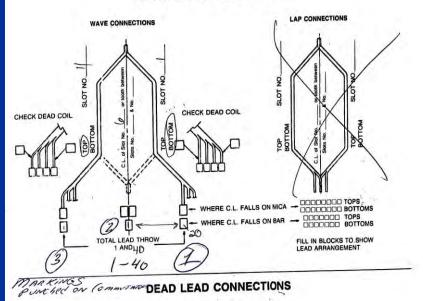
TURNING THE COMMUTATOR

	ft/min = 0.26 x D x rpm where D (commutator diameter) is in inches	m/min = 0.00314 x D x rpm where D (commutator diameter) is in mm
SURFACE SPEED		
Single point carbide tool	300-500 ft/min	90-150 m/min
Synthetic diamond tool	Max 750 ft/min*	230 m/min*
DEPTH OF CUT	0.007 - 0.010 in	0.18 - 0.25 mm
FEED RATE	0.005 - 0.007 in/rev	0.13 - 0.18 mm/rev

*Or follow recommendations of manufacturer. Note: Use a flat file to chamfer the ends of the commutator bars (0.040 in/1 mm).

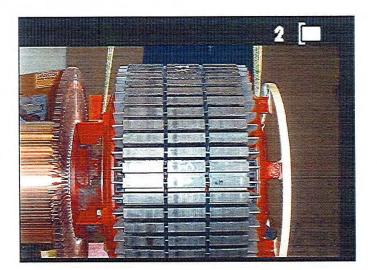
COMMUTATOR RUNOUT AND FINISH

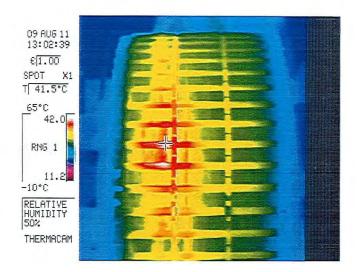
and the second se	Peripher	al speed
	≤ 5000 ft/min	> 5000 ft/min 25, 9 m/
Maximum total indicated runout	0.0030" (0.076 mm)	0.0015" (0.038 mm)
Maximum total indicated runout in any quadrant	0.0015" (0.038 mm)	0.0010" (0.025 mm)
Maximum between adjacent bars	0.0002" (0.005 mm)	0.0002" (0.005 mm)
Maximum taper (in/ft)	0.0020"/ft (.	051 mm/m)_
Surface finish	40 to 60 micro-inches	(1.02 to 1.52 microns)


UNDERCUTTING THE COMMUTATOR

1.	Type of undercut:	U-shaped and beveled, as shown in Figure 1. (Note: in certain cases, the shop manager may determine that a different type of undercut should be used.)	Figure 1
2,	Depth of undercut:	Factory specifications vary. A good rule to follow: make the depth equal to 1 - 1% times the slot width.	ini
3.	Cleaning of slots:	Use slotting files and hand scrapers to eliminate mica tins along the sides of slots.	
		Bevel the bar edges 0.015" (0.4 mm).	Mica
		Clean the slots using clean, oil-free air.	U-shaped undercuts and bevels.
4.	Polishing of commutator:	Polish the commutator with a fine-grit stone or sandpaper to el finish should be no more than 40 to 60 micro-inches (1.02 to 1	
		Note: Never use emery paper. Electrically conductive particles mutator bars and cause arcing.	can lodge in the surface of the com-

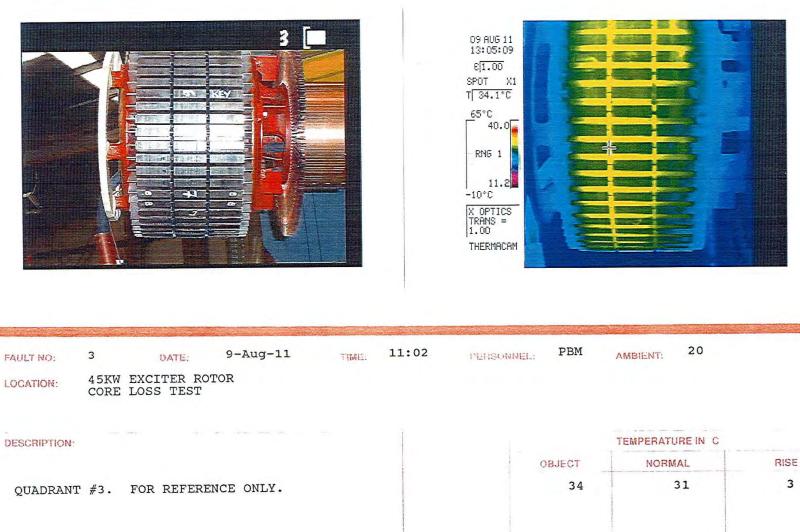
COMMUTATOR CONNECTIONS


BEAVER ELECTRICAL MACHINERY 7440 LOWLAND DRIVE BURNABY, BC, CANADA V5J 5A4 6044315000

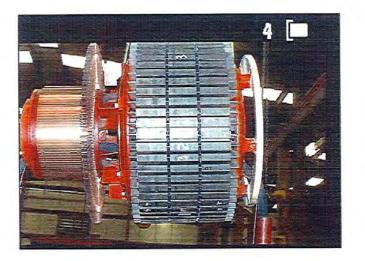

Date: 00 01	2011 S.O. Number: 140340 NAMEPLATE DATA	Customer: BC HYDRO
Description	:	RPM : 200
HP/KW/KVA		Volts/Ph/Freg: 125 / /
	: WESTINGHOUSE	Amps :
	: NA	Frame Type : Pre NEMA
Enclosure		Temp/Duty : /
Serial No.	1607905	Model/Style :
Other data		Attachment :
other uata	LEXSECO ARMATURE CORELO	
	INPUT	55 IE51
Core length		No. ducts/width:2 /.375
Core OD		5 No. holes/dia. :8 /.375
core ob	RESULTS	, NO. HOTES/UTA0 /.3/5
Flux/Tan	: 2531 /12.5; Actual watts : 1239	Maximum limit · 10
	: 2293 Amp turn/inch : 3.56	
Actual amps		
Actual amps	RECOMMENDATIONS	
Complege is	within normal range.	b
	t spots by raising amps from 199	1. 01
	398 and 597 . If none found, cor COMMENTS	
THIS TEST AF	FER CORE WAS IN EGGWATER FOR THE W	/EEKEND
NO HOT SPOTS		
	1- 1	

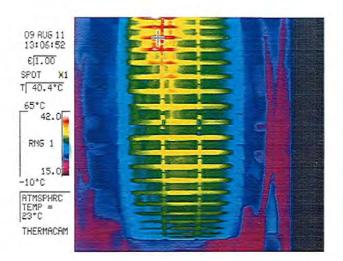
	0 1
A	Before
BEAVER ELECTRICAL M 7440 LOWLAND D BURNABY, BC, CANADA 6044315000	ACHINERY RIVE V5J 5A4
CORELOSS TEST RE	PORT RCHU
Date: 05-16-2011 S.O. Number: 140340	Customer. Dic. 11YDRO
Description : ARMAFURE CORE NAMEPLATE DAT	A 260
Description : HAMAFORE CORE	RPM : 200
dP (KW/KVA : 43)	Volts/Ph/Freq: 126_1 /
Manufacturer: URSTINGHOUSE	Amps : <u>360</u>
Prame :	Frame Type : None
Enclosure : OP	Temp/Duty :/
Serial No. : 1607.905	Model/Style :
Other data :	Attachment :
LEXSECO ARMATURE CORE INPUT	LOSS TEST
Core length :11.061 Backiron depth:3.6	No. ducts/width:2 /.385
Core OD :24.75 Slot Depth :1.6 RESULTS	85 No. holes/dia. :0 /0
7lux/Tap : 2928 /12.5 Actual watts : 20	84 Maximum limit : 10
Actual flux : 2928 Amp turn/inch : 6.	
Actual amps : 391 Watts/lb loss : 3. RECOMMENDATIO	
Coreloss is within normal range.	
Check for hot spots by raising amps from 39	1
to between 782 and 1173 . If none found, COMMENTS	
NO HOT SPOTS FOUND	
1	- 0
Tested by: Artan Review	red by: 711
	VIVC.

of the constraint of the distance will be added to a present the second second statement of the second seco

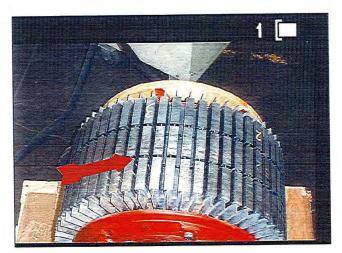


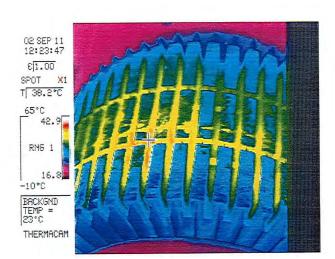
				A STATE OF A STATE OF A STATE		Conclusion of the second	the second s		
2	DATE:	9-Aug-11	TIME:	10:56	PERSONNEL:	PBM	AMBIENT:	20	
		TOR							
							TEMPERATU	JRE IN C	-
					1	DBJECT	NORM	IAL	RISE
#2.	FOR REFERE	NCE ONLY.				41		32	9
	45KW CORE	45KW EXCITER RO CORE LOSS TEST	45KW EXCITER ROTOR CORE LOSS TEST	45KW EXCITER ROTOR CORE LOSS TEST	45KW EXCITER ROTOR CORE LOSS TEST				




at the direction of the site of the construction of another the model the model of the

The Transmitter of the Article and the the theory of the test of the transmitter of the t

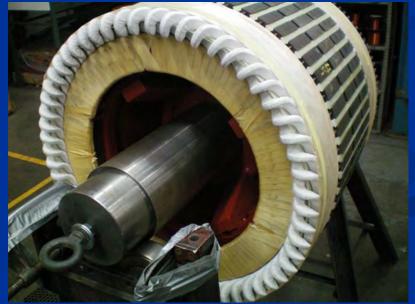




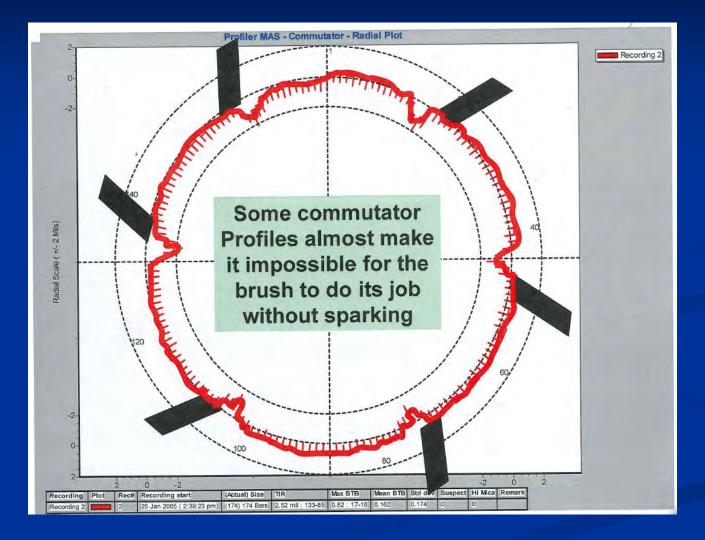
FAULT NO:	4	DATE:	9-Aug-11	TIME.	11:07	PERSONNEL	PBM	AMBIENT:	20	
LOCATION:	45KW CORE	EXCITER RO LOSS TEST	DTOR							
DESCRIPTION:								TEMPERATU	JRE IN C	
						C	BJECT	NORM	AL	RISE
QUADRANI	#4.	FOR REFER	ENCE ONLY.				41	-	32	9

(c) the other products and the product of the pr

FAULT NO:	1	DATE:	2-Sep-11	TIME.	10:25	PERSONNEL:	PBM	AMBIENT:	20	,
LOCATION:		EXCITER RO LOSS TEST	DTOR							`
DESCRIPTION:	Section 1				1	1.17		TEMPERATU	IRE IN C	-
						0	BJECT	NORM	AL	RISE
QUADRAN	C #2.]	FOR REFERI	ENCE ONLY.				38		33	5
(SEE FAU	JLT #2,	AUGUST 9	, 2011).							
										O.
										2


Exciter armature (half coil winding)

Exciter armature (half coil winding)


Commutator Profile Test

Measurement Report Page 1 Unnamed.mas 10/18/2011 12:54:57 PM Profiler MAS - Commutator Mils 100 110 20 30 40 50 80 90 Max BTB Mean BTB Std dev Suspect Hi Mica Remark Rec# Recording start (Actual) Size TIR 19 Oct 2011 (12:43:00 am) (116) 116 Bars 0.71 mil: 65-103 0.19 15-16 0.033 0.034 0 Profiler MAS 5 11 build :

Measurement Report Page 1 Unnamed.mas 10/18/2011 12:54:52 PM Profiler MAS - Commutator - Radial Plot 2.0 0.0 -2.0 Radial Scale (+/- 2.0 Mils) -2.0 0.0 2.0 2.0 0.0 -2.0 -2.0 0.0 2.0 Radial Scale (+/- 2.0 Mils) Mean BTB Std dev Suspect Hi Mica Remark Recording Plot Rec# Recording start (Actual) Size TIR Max BTB 19 Oct 2011 (12:43:00 am) (116) 116 Bars 0.71 mil : 65-103 0.19 : 15-16 0.033 Recording 1 2 0.034 0 0 Profiler MAS 5.11 build 5 TIN 0.00071' 25

Commutator Profile Test Plot

Commutator (armature winding) Megger Test

IR and PI measured at 1000 Vdc.

Commutator (armature winding) Surge Test

Surge test is being performed with 16 commutator segments span.

Commutator Surge test equipment

Commutator (armature winding) Surge test

Surge comparison test wave form

Surge test voltage shall not exceed the AC Hipot test voltage level

WORK PERFORMED ON FIELD FRAME ASSEMBLY

- 1) INCOMING TESTS, REMOVE AND ROAST COILS
- 2) RECORD INCOMING DIAMETRICAL IRON MEASUREMENTS AND SHIMS
- 3) RECORD WINDING DATA
- 4) REWIND ALL SIX MAIN POLE COILS, U300 THERMO SETTIN EPOXY
- 5) BOLTED CONNECTIONS ON SHUNT COILS
- 6) ROAST, CLEAN AND RE-INSULAT SERIES WINDINGS
- 7) ROAST CLEAN AND RE-INSULATE INTERPOLE WINDINGS
- 8) REPLACE ALL COIL BLOCKING & SPACERS
- 9) CLEAN AND RE-INSULATE ALL JUMPERS
- 10) SILVER PLATE CONNECTIONS
- 11) CORN COB FRAME AND POLE PIECES

12) INSTALL NEW COILS

- 13) CHECK FINAL AIR GAP MEASUREMENTS(indicate where)
- 14) ADJUST SHIMS ON ONE INTERPOLE
- 15) TORQUE ALL BOLTS AND CONNECTIONS
- 16) FULL ELECTRICAL TESTS AS PER SPECIFICATIONS
- 17) POLARITY TESTS
- 18) RESISTANCE CHECKS
- 19) 400 HZ DROP TESTS and SURGE TESTS
- 20) VARNISH AND BAKE WINDINGS, 2 CYCLES
- 21) PAINT ASSEMBLY ASA70 ENAMEL
- 22) PALLETIZE AND SHRINK WRAP AND SHIP

G1 Field Frame Windings (were in bad condition before rewind)

All (6) Main Field winding removed

Six (6) Interpole windings with shims removed.

G1 Field Frame Windings (were in bad condition before rewind)

Interpole winding and Series winding jumpers.

Main Field winding with shims removed.

Rotating exciter (Field Frame windings)

Main Field ,Series Field and Interpole windings

Series Field and Interpole windings (have a few turns) and Main Field winding (has many turns).

Commutator (armature winding) Megger Test

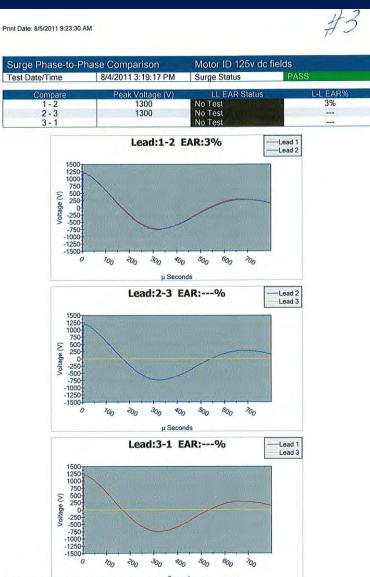
Blocking and lashing of the Series Field winding to prevent it from moving.

Exciter Field Frame with Interpoles removed

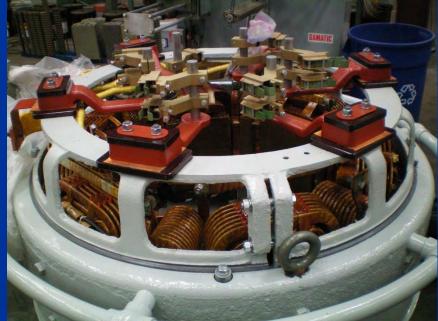
Rotating Exciter (Field Frame windings)

Interpoles winding

Rotating Exciter (Field Frame windings)


Main Field winding with shims

Main Shunt Field Winding Surge Test


Report Generated by Baker Instrument Company, an SKP Stopp Sompany - AWA

Rotating Exciter (Brush gear)

Brush gear yoke is in place.

The number of brush holder arms (6) is equal to the number of exciter field poles.

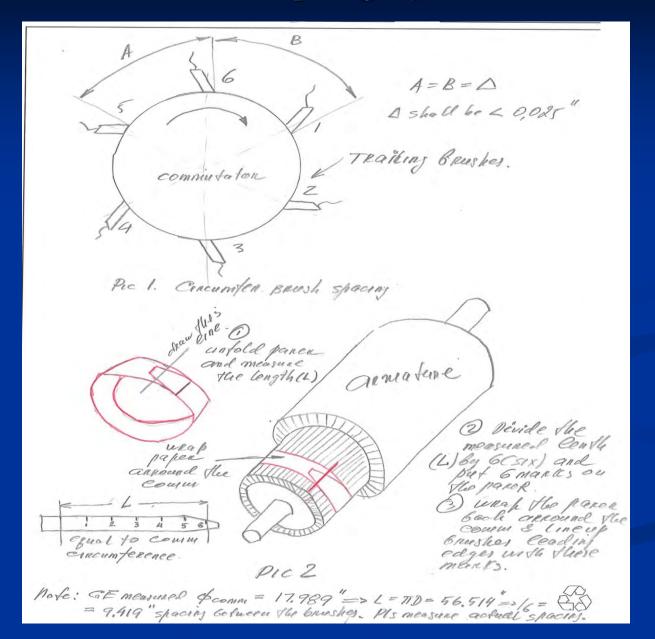
Rotating exciter (Field windings) Interconnection

Modification has been also made to brush holders interconnection with the windings and flexible connectors have been installed.

G1 commutator spins clockwise.

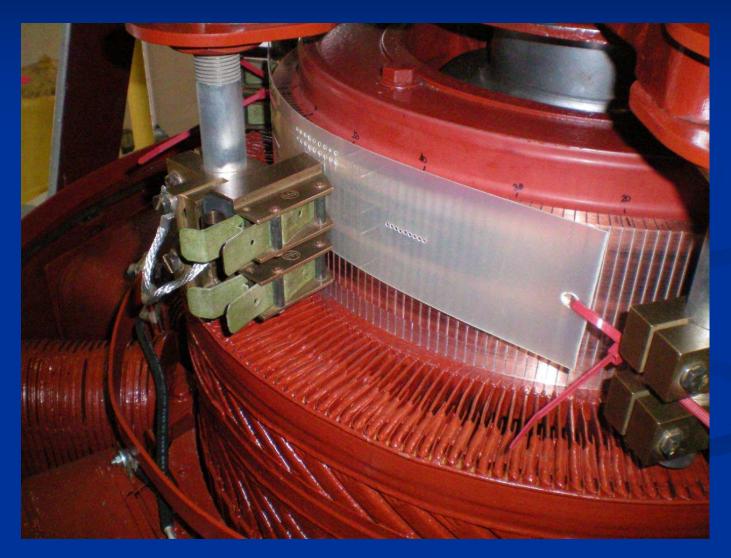
Hence, to improve brush gear performance modification has been made to the brush holders position. Brush holders have been 180° reversed to make brushes running with 15° trailing rather than with 15° leading angle.

Rotating exciter adjustments and testing at site G2 exciter.



Rotating exciter adjustments and testing at site

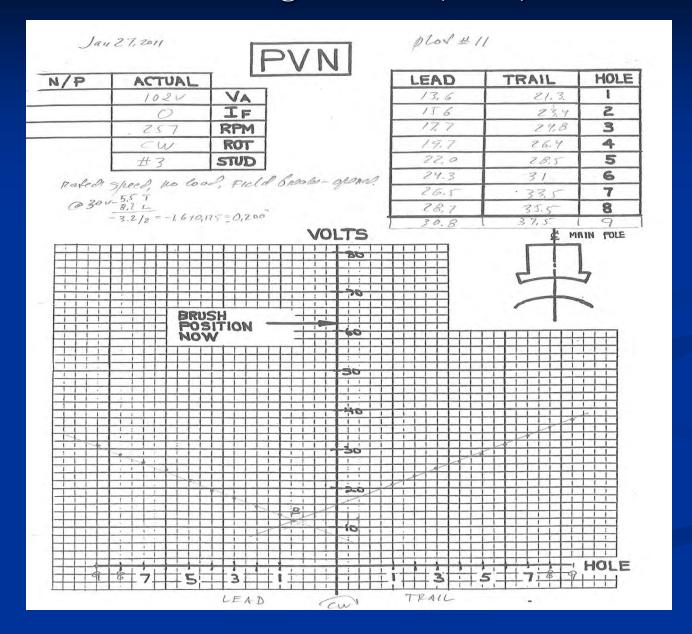
G2 exciter spins CW (note : brush holder is set to TRAILING position because of its angle 15 Deg.



Rotating exciter adjustments & testing Brush holders spacing adjustment

Rotating exciter adjustments and testing at site

G2 exciter set up for **PVN** (Pencil Voltage Neutral) **Test**


Rotating exciter adjustments and testing at site G2 exciter Pencil Voltage Neutral PVN test on spinning machine .

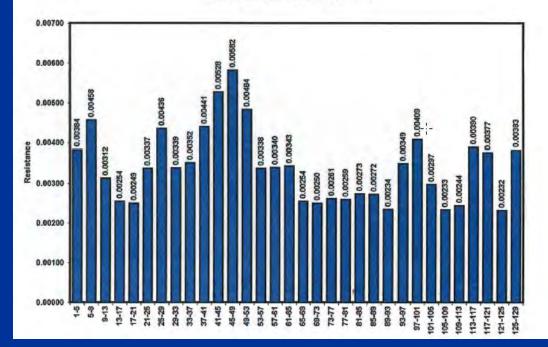
Rotating exciter adjustments and testing at site G2 exciter Pencil Voltage Neutral PVN test .

Rotating exciter adjustments & testing Pencil Voltage Neutral (PVN) Test

Importance of armature resistance test

ARMATURE WITH HIGH-RISERS

FAILED HIGH-RISERS


Bar-to-Bar ("Span of Bars") Resistance Test method Before repair

Acceptance criteria :

Deviation "Span of Bars" < 1 ¹/₀ Deviation "Bar-to-Bar" < 5 ⁹/₀

Graph below : Note variations in resistance measurements > 20%

Bar-to-Bar before repair span (1-5)

RULE for Span method :

SOMEWHAT DIFFICULT

TO ANALYZE

0.006

0.005

0.004

E 0.003

0.002

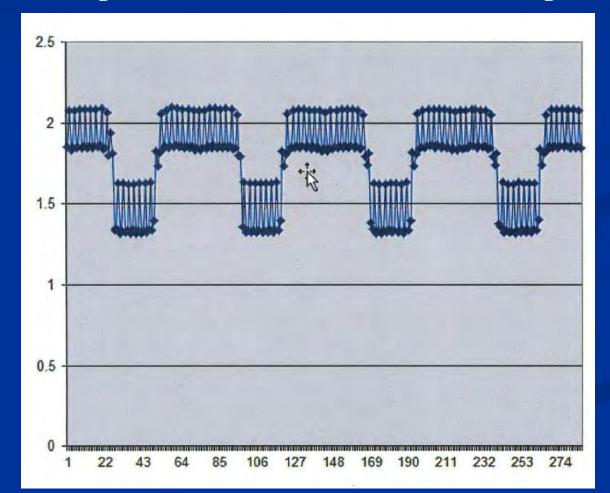
0.001

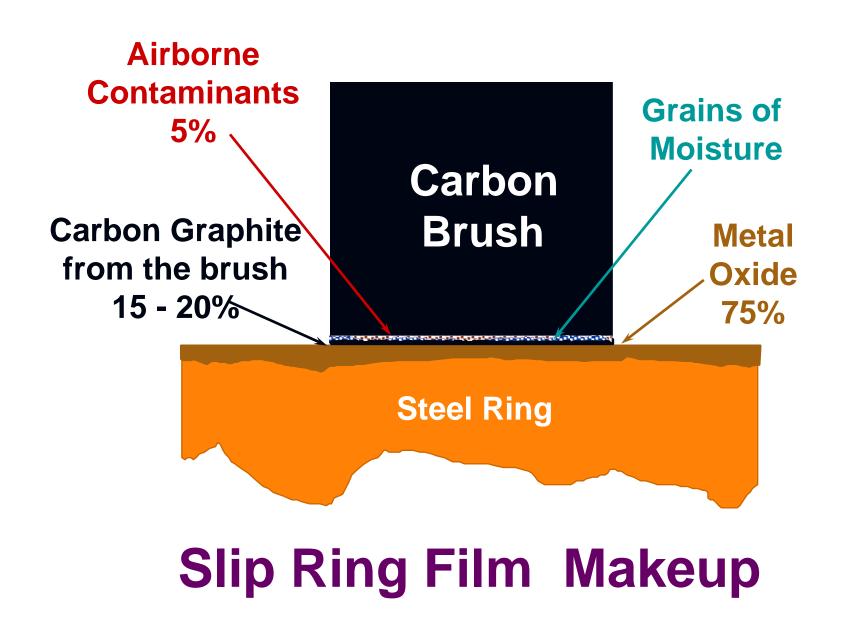
The span should be less than one pole-pitch.

Suggested span = $\frac{1}{4}$ of bar polepitch. The fewer number of bars spanned the more accurate the results.

Bar per pole = Bars/Poles 126 bars/6 poles=21 bars Bar pole Pitch= 1 & 22

Bar-to-Bar ("Span of Bars") Resistance Test method After repair




HELPFUL HINTS FOR BAR-TO-BAR TESTING

- 1. Caution when using spanned bars option.
- 2. Span bars 1/2 pole pitch or less, prefer 1/4 pole pitch.
- 3. Dump raw data to Microsoft Excel- perform calculations of unbalance.
- 4. Convert raw data to Microsoft Excel bar chart.
- 5. Perform bar-to-bar testing on suspect spanned bars.

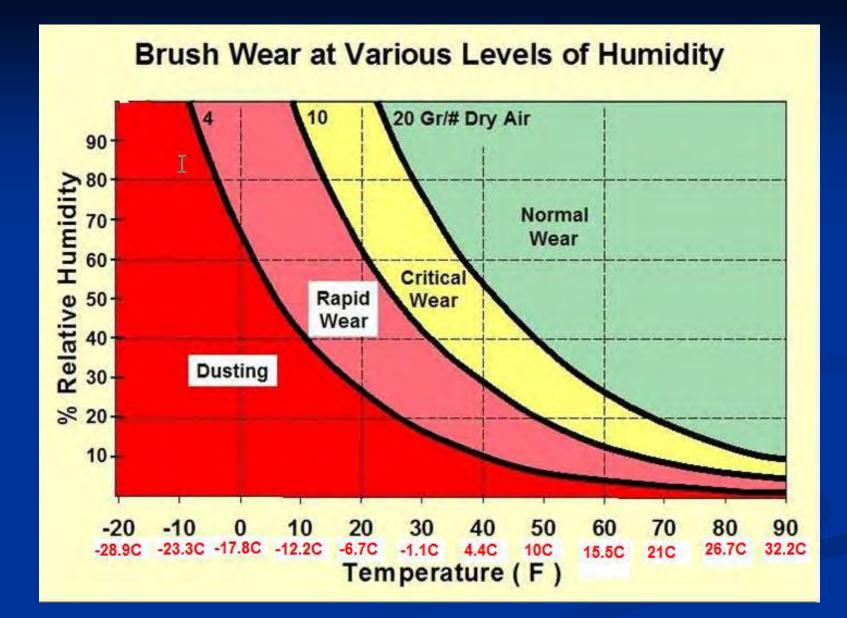
Bar-to-Bar Resistance Test (armature winding with Equalizers)

Expect repeatable pattern on good commutator and armature winding

Why Brushes Wear so fast?

Carbon rubbing on bare copper/steel
 high friction

Comm/slipring surface with good film
 - low friction


Rule of thumb : brush wear 0.003 to 0.006 inch/day or about 5 mm / 1000 hours

Humidity <u>Units</u>

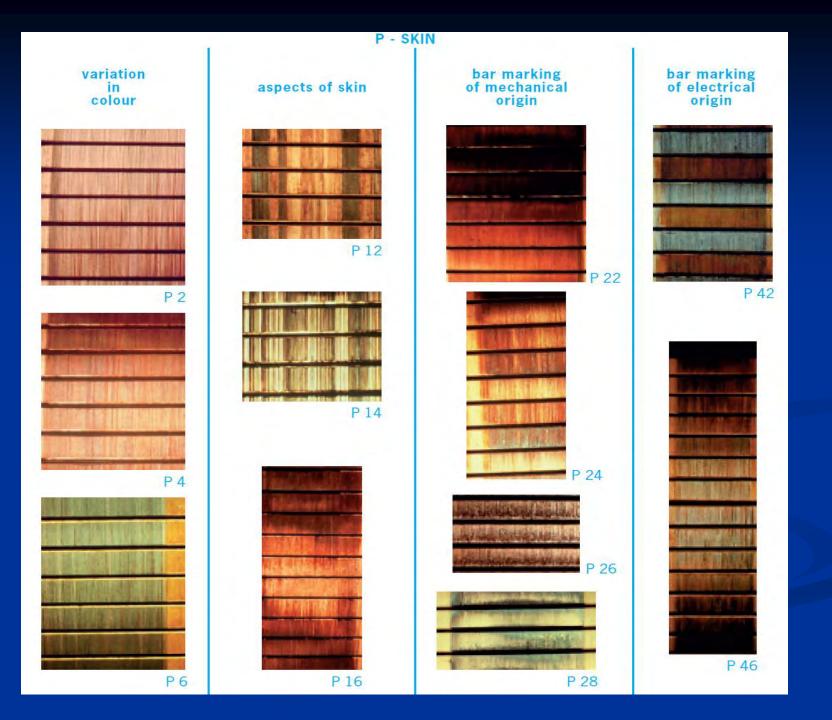
 Relative Humidity (RH) - %
 Absolute Humidity - grains / lb dry air 1 grain = 0.000143 lbs

<u>Two critical thresholds</u> : 2 and 25 g of water / m ³ of air
 less than 2 - brush wear
 above 25 - commutator deterioration
 <u>Rapid Brush Wear</u>:
 about 20 % RH at 75 F, 24°C or

about 40% RH at 55 F, 13°C

What is Good Commutator Film ?

Commutator filming is a continuous process !


(formed and stripped and formed andmaintained)

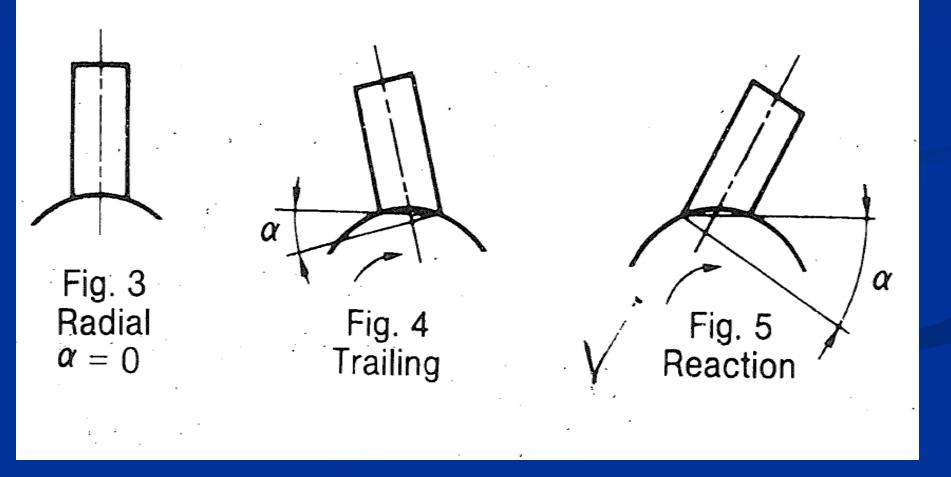
Commutator COLOR

Chocolate brown or burnished bronze to dark brown

It is not bright copper or burned black copper color

Uniform in color

Requirements For Good Film


In General:

Brush Current density : 55
Commutator Surface Temperature : 60
Water Vapor (optimum): 8-15 g of
Brush Pressure : 21
Commutator Surface Speed (D, rpm) <
Brush Material or Grade no
Lack of Contamination (vapors) Sil
Mechanical Integrity and Setup El

55-85 Amps/in² : 60-90°C 8-15 g of water/ m³air 2 to 4 lbs/in² m) < 8,000 fpm no MAGIC brush Silic.,Sulf.,Chl. El neutr,alignm.

Brush angle

Trailing : at least 5° (5-15° common use)
Reaction : 30-35° (with 22 ° minimum safe)

PRINCIPAL CHARACTERISTICS

GRADE GROUP	GRADE	Apparent density	μΩ.inch	Shore Hardness	Flexural WPa Strength	Contact dub ∆U en V	Friction	Maximum A/curs A/inch ²	n/sec. ft/sec.	% Metal content
	A 121	1,75	2 200	30	25	M	L	12 to 20	≪ 15 (≈ 49)	
	A 122	1,67	45 000	27	20	H	L.	10 to 12	≤ 15 (≤ 49)	
Carbo- graphitic	A 176	1,60	52 500	40	20	H	L	8 to 10	30	
graphinc	A 210	1,57	25 000	30	16	M	L.	8 to 10	≤ 25 (≤ 82)	
	A 252	1,57	45 000	27	16	н	L	10 to 12	≤ 25 (≈ 82)	
Soft	LFC 501	1,46	1 900		8	М	М	6 to 10	75	
graphitic	LFC 554	1,26	2 000		10	м	м	11 to 13	90 (295)	
	EG 34D	1,60	1 100	35	25	М	М	12	50 (164)	
	EG 389P	1,49	1 600	29	19	м	м	12 (75)	50	
	EG 396	1,52	1 600	27	19	M	м	12	50	
	EG 362	1,62	2 500	35	21	M	M	12	50	
	EG 40P	1,62	3 200	57	27	M	M	12	50	
	EG 313	1,70	4 700	54	21	M	L	12	50	
_	EG 367	1,53	4 100	48	21	M	M	12	50	
Electro- graphitic	EG 332	1,52	4 200	48	21	M	М	12	50	
graphic	EG 387	1,63	3 300	60	39	M	м	12	50	
	EG 300	1,57	4 200	58	24	м	L/M	12	50	
	EG 98	1,60	3 400	60	33	м	м	12	50	
	EG 369	1,57	5 100	55	25	M	М	12	50	
	EG 319P	1,46	7 200	52	26	н	M	12	50	
	EG 321	1,46	6 600	54	26	н	M	12	50	
	EG 365	1,62	5 300 (2 840)	48	15	м	M	12	50 (164)	
	EG 7099	1,72	1 150	40	34	М	М	12	45 (148)	
	EG 9599	1,61	1 600	33	28	м	м	12	45 (148)	
	EG 9117	1,69	3 300	77	32	м	м	12	50	
Summer and	EG 8019	1,77	4 700	77	31	м	М	12	45	
Impregnated	EG 8067	1,67	3,900	77	36	м	М	12	45	
electro- graphitic	EG 8220	1,82	5 000	90	48	М	М	12	50	
Brabilitio	EG 7097	1,68	4 000	80	35	M	м	12	50	
	EG 341	1,57	7 025	74	34	H	M	12	50	
	EG 364	1,58	6 500	73	35	н	м	12	50	
	EG 6489	1,57	6 900	75	35	н	м	12	50	

CONTACT DROP

The value of contact drop	Symbol	Indication	Contact drop in volts Sum of both polarities	Friction	
and friction is given by the use	Ĥ	High	H > 3	H > 0.20	
of symbols having	M	Medium	2.3 < M < 3	0.12 < M < 0.20	
the following significance	L	Low	1.4 < L < 2.3	L < 0.12	
	VL	Very low	0.5 < VL < 1.4		
	VVL	Very very low	VVL < 0.5		

Jig to seat the brushes in the shop

Questions ?