Generator diagnostics From failure modes to risk for forced outage

IRMC 2018, Long Beach Gabor Csaba Ph.D. Fortum TGS

Diagnostics based on failure modes

- Risk statistics and failure modes
- Diagnostic tools
- Generator inspection levels
- Inspection levels ability to detect failure modes
- Risk assessment and recommendations
- Examples
- Summary

Turbogenerator failures, causing forced outage

efortum

What is generator maintenance?

- Turbogenerators are inherently reliable, yet technically complex item of machinery, designed for a long life.
- Performance of a generator does not deteriorate with time.
 Generator-OH = 10% reconditioning + 90% diagnostics
- Example of reconditioning
 - Cleaning
 - Changing of gaskets
 - Slot wedge tightening
 - Grinding of slip rings

(e fortum

4 Gabor Csaba

Diagnostic tools

- Electrical tests are performed to identify:
 - Short circuits in stator core
 - Breakage in rotor and stator windings
 - Condition of the main insulation in rotor and stator winding
 - Defects in contact between stator bars and stator slots
 - Short circuits in the rotor winding
- Visual inspection with the "trained eye" is and important tool to gather information.
 - Overheating, signs of vibration,
 - Contamination, signs of PD, and others
- All information is analyzed together with our fleet experience to form a diagnose.

Electric testing

6 Gabor Csaba

Inspection levels for turbogenerator

- Normally there are three inspection levels:
 - Major Overhaul (MO) where bearings, coolers and the rotor are disassembled.
 - Limited Inspection (LI) where parts of bearings and some winding covers are removed.
 - Safety Check (SC) where only inspection hatches are removed / opened.
- Major overhaul is the most important part of the maintenance plan.
- Complete disassembly enables inspections and complete diagnostics of components.

Which method can detect which failure mode?

- Approx. 100 modes are identified and described.
- <u>Detected</u> = something is wrong, we are not exactly sure on which failure mode.
- <u>Identified</u> = we know which failure mode has occurred, a more precise risk assessment can be made.
- Possibility to detect and identify failure modes depends on the inspection level being performed.

Failure modes: stator winding and core IRMC 2018 - Generator diagnostics based on failure modes

Inspection level and method

Failure mode

Ofortum

8 Gabor Csaba

Detection and identification of failure modes – Examples

	Major Overhaul								Limited Inspection					Safety Check					
Felmod	Visual	El-test basic	PD measure	HV-test	EICID	RSO	Ultra sonic	Penetrant / EC	Visual	El-test basic	PD measure	HV-test	RSO		Visual	El-test basic	PD measure	HV-test	RSO
Aging of main insulation stator winding	d	d	i	i						d	i	d				d	i	d	
Contaminated stator end winding	i		d							i	d			1			d		
Cracks in rotor fans	d							i	d					1					

- Measurement of partial discharges (PD) → identification of <u>aging insulation of stator winding</u> at all inspection levels.
- <u>Contamination of stator end winding</u>, detection by using PD measurements, identification visually and possible to correct during Major Overhaul.
- <u>Cracks in rotor fans</u>, can be detected at visual inspection but requires Major Overhaul to be identified an corrected.

Detectability at Major Overhaul

- Major Overhaul is the most important part of the maintenance plan
- Complete inspection and diagnostics of all critical components possible.
- Gives possibilities for reconditioning
- A complete MO contains:
 - Removing bearings, winding covers, rotor and coolers
 - Visual inspection of all components
 - Diagnostic tests of all critical components
- A major overhaul can:
 - Identify 85% of failure modes
 - Detect another 10%.
 - Remaining 5% of failure modes can be identified during operation.

10 Gabor Csaba

Detectability at different inspection levels Conclusions

Detectability using on-line diagnostics

- Failure modes can also be detected during operation by on-line diagnostics.
- Air-cooled turbogenerator can be fitted with:
 - PD monitoring in each phase of the stator winding
 - Rotor Flux Monitoring
 - Monitoring stator winding and cooling air temperatures
 - Monitoring bearing vibration
 - Operating parameter trends
 - Generator protection relays
- On-line diagnostics can:

12

- Identify 5% failure modes.
- Detect an additional 35%.
- Protection system detects an additional 15% of the failure modes, but the reason for the trip must be investigated before the restart.

Result of inspection with diagnostics

- We supply You with the present risk situation!
- Analysis of the data results in a risk assessment at component level.
- The risk to the generator is equal to that of the highest-risk component, taking into account planed operation until next MO
- Results are reported as four risk levels from Base Risk to High Risk.

Recommendations for risk reduction

- All reports contains recommendations of:
 - actions that can reduce the risk for operational disturbance,
 e.g. monitoring equipment or changing time between MO's
 - actions that can reduce the consequence of such an outage, e.g. spare parts or spare components
- Purpose is to maintain the risk at an acceptable level until next planned major overhaul or to reduce the risk level.
- The result gives the plant owner a powerful basis for updating the maintenance plan. It also gives guide to future investments needed to maintain risk at an acceptable level.

Example: Loosening of stator slot wedges

- Slot pretension force *F* may reduce with time.
- Vibration starts → wear of corona protection
 → partial discharges → accelerated wearing
- Eventually an earth fault occurs → damages on stator bars, in worst case also core.
- Diagnostics performed at MO or on-line can identify the failure mode. It can not be detected at LI or SC.

Insulation dust from partial discharges

15 Gabor Csaba

Example: Turn-to-turn short circuits of rotor coils

- Start/stop cycling leads with time to elongation of rotor coil ends.
- Elongation can for instance lead to:
 - − Turn-to-turn shorts \rightarrow vibrations
 - − Broken winding \rightarrow earth faults
- Both problems eventually lead to outage and repair of rotor.
- Failure mode can be identified using RSO at standstill (SC, LI or MO).
- At MO it is recommended to install RFM for detecting turn-to-turn shorts during operation.

Elongation of coils

16 Gabor Csaba

Summary

- Approximately 100 fault modes have been identified for a turbogenerator
- Ability to detect failure modes at different inspection levels have been mapped.
- Risk level in 4 steps are defined.
- Diagnostic results from electrical tests and visual inspections are weighted together with operation history, design weaknesses and planned operation.
- The results of the analysis are presented in a report where each component is classified by risk. The highest component risk gives the generator risk.
- The first page of the report shows summary with total risk as well as recommendations for reducing risk levels.
- The methodology can also be applied to other parts of the plant, such as turbine, gear box or transformer.

17 Gabor Csaba

Generator diagnostics, March 2018

Summary of Generator diagnostics

18

Life time assessments using failure mode concept

19 Gabor Csaba

Life Time Assessment (LTA)

- What is the life time? The generator does not have a life and therefore no life time.
- The life time for a generator is when the function does not fulfill the economic expectations in terms of power output capacity, availability and maintenability.
- A life time assessment consist of:
 - 1. A desk top study based on history, operational data and design solutions
 - 2. Taylor made diagnostics, usually as an extension of a major overhaul
 - 3. Evaluation of collected data and analysis against planned future operation, resulting in a report with recommendations and their effect on risk reduction.

A Major Overhaul looks forward to the next MO.

A Lifetime Assessment looks forward as far as the plant is planned to run.

Example of Life Time Assessment using failure mode concept

- Generator
 - Type: ASEA GTL
 - Delivered: 1980ies
 - Power: 100 MVA, cosphi 0.85
 - Op. time: ~250'000 hours
 - Starts: ~500
 - AOH^{*}) ~= 260'000
 - Operation: continuous,
 ~5000 hours/year
- Assignment: Perform life time assessment for future operation of 85'000 hours.

*) Adjusted operation hours (AOH) = Actual hours + Number of starts x 20 hours

21 Gabor Csaba

Life Time Assessment, phase 1: Desktop study

- Collection of historic data ~1980 2016.
 - Interviews with key personnel from maintenance department
 - Review of inspection reports in archive at site
 - Analysis of operation data vs temperatures and vibration over time and compared to generator power.

• Recommendations for further investigations, Phase 2.

Core cooling channels

Magnetic flux shield

Stator end winding

Rotor end winding

Retaining ring

Rotor slots

Fan blades

Magnetic

22 Gabor Csaba

Details of phase 1 - Analysis of stator core

- Stator core built up of laminations, assembled segment by segment.
- Channels for cooling air flow placed periodically to lead away hot air from rotor and to cool the stator.
- Generator designed with pressed "warts" out of core sheets in order to form cooling channels.
 Extra wedges
- Warts collapse → low pressure → vibration damages and less cooling.
- Recommendations
 - Design testing equipment to quantify looseness in core
 - Update risk analysis and propose solutions

23 Gabor Csaba

Phase 2: Major Overhaul + Tailor made diagnostics Test of core pressure

-0.2MPa

-0.1MPa

-0,025 Mpa

-7

_9

-10

^0 -8

- A newly built core has a pressure of 1 MPa, for ASEA design.
- After initial settlement it will be less.
- Experience say that >=0.1 MPa is acceptable.
- Test equipment consisting of pressure bellow and movement detector calibrated at pressure 0.025 – 0.2 MPA.
- Tests at site, see example
- Over all result gave core pressure assessed to be << 0.1 MPa

Inspection plan core pressure

Life Time Assessment, phase 3: Update of risk assessment

- There are deviations in the stator winding, but the most serious problems are in the stator core due to very low core pressure.
- Assessment is that the stator is at level 4, *High risk*.
- Overall conclusion for the stator is that the desired operation, 85'000 hours, will most likely not be possible to reach.
- To reduce the risk to acceptable level, a new core is needed and a new winding.
- Recommendation was to purchase a new stator.
- Customer decided to replace the complete generator with a new one.

Follow us at:
www.fortum.com
Twitter.com/fortum
Linkedin.com/company/fortum

@fortum

Example of installation for monitoring the rotor

Example of installation for monitoring the stator

