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Hydro-turbine monitoring: from self-lear ned equipment behavior

to asingle global deviation indicator

Francois Léonard, James Merleau, Dominique Tapsoba, Martin Gagnon

Abstract:

In large machines, the possible failures are numerous and complex events. Furthermore,
monitoring a multitude of measurement points leads to an accumulation of a large amount
of data, making the task of tracking the equipment even more difficult. Often, there might
even be an emerging problem that can influence several indicators simultaneously without
exceeding the alert level of any one of them in particular. For end-users, the proposed
monitoring system acts like a black box with an alert that comes on when the equipment’s
behaviour changes, much like the "check engine" of a car. The behavior of the equipment
is tracked by a continuously updated statistical model and it is thus possible to compare
future measurements with model predictions. Both the model and measurement
uncertainties are taken into account by the procedure, and the confidence level can be
determined by the user and is therefore a fixed quantity. In addition, the approach combines
all the individual exceedances of each indicator in a single global deviation. When an alert
is raised, the individual exceedances can be used in order to determine the source of the
alert. Two different examples are presented where failures occurred on hydraulic turbine-
generator units: the loss of a hydraulic turbine runner cone and a breakage of a thrust
bearing.

Introduction

Large machines are generally constructed in small numbers and are custom made for each
project. Therefore, they usually differ from one project to the next. Each time an equipment

is refurbished, units which were initially similar in their construction become less and less
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so. An observed defect on a unit will not show dyathe same symptoms as a similar
defect observed on another unit, and furthermoueh svents are fairly rare. As a
consequence, we usually do not have a sufficidatiye historical dataset of observed
failures to feed machine learning methodologiefhsagcneural networks [1]. On the other
hand, to model a large machine in order to simudktere modes is laborious and there is
no guarantee that the full set of possible everilisbe explored. We are thus left with
monitoring large machines to detect behaviouralngka [2] which above a certain
threshold establishes a compromise between thabildlp of missing a defect, a missed
alert, and that of a false alert. In this paperpnesent an alert system that uses available
information in order to detect statistically sigoéint behavioural changes. The main
advantage of the approach is to increase the dmiesensitivity to behavioural change
while decreasing the false alert rate.

The proposed system consists of four modules: a dalidating module, a modeling
module, an interpolation module and a comparisodut® We will call a snapshot the set
S of indicators (see Fig. 1) obtained from data mesbto characterise the response of an

equipment as well as the prevailing operating domas during the measurements. Let the

i snapshot be given b$ =R, JO,, where R, E{riyl,r r

el h ) IS the set of

response characteristics, an@is{qll,q'z,u-,o

40 } the set of operating

MM
conditions. An operating condition can for exammerespond to a given power set (MW

and MVAR) at a given cooling fluid temperature, ay={280 MW, 40 MVAR, 10 °¢

for snapshot icw.

The data validation module retains snapshots fachvbperating conditions have been
stable since a fixed amount of time and for measardgs constrained to a range of
acceptable values. For example, snapshots takengduansitory regimes will not be

conserved and snapshots for which the measurethgoshter temperature is below zero
will also be eliminated. If there is no Booleanighfe indicating that the equipment is
operating, the module will detect that the machéngtopped to remove the corresponding

snapshots.
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Figure 1: Snapshot definition

The modelling module (see gray shading of Fig.sBswalidated historical snapshots when
the equipment is considered to be in good condifitve history of snapshots needs to be
representative of most operating conditions usuatiyosed on the equipment since for
monitoring purposes, it is difficult to quantifybehavioural discrepancy for an equipment
that is operated under a new regime. The modeluepthe average behaviour of the
machine responses and the statistical variationth@fresponses for given historical

operating conditions. Numerical modelling being es=arily discrete, the number of

operating conditions are limited and they thus ntedbe fairly uniformly distributed

through the space of operating conditions histdyiexplored.

The interpolation module (see Fig. 2) calculatesrésponse and its statistical dispersion
in regions unexplored by the available operatingdaiions of the model. Furthermore, this
module evaluates the error magnitude of the intatjpm computations. For example, an
interpolation near one or many available operatimgditions will be more precise than an

interpolation, or extrapolation, far from availalolperating conditions.
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Figure 2: Monitoring process flowchart. The Response Operating condition
clustering module processes each new snapshot ﬂ r
to construct the model. When the model has Clustering

treated enough information on the machine’s

response, the interpolation module gives a w

response prediction for the current operating Y
conditions and the observed response is Interpolation
compared to the predicted response which Predictedlresponse
quantifies the behavioural deviation (comparison %?(—J
module).

Deviation

The comparison module (see circled minus sign gf E) computes the deviation from
normal behaviour by comparing the measured valtie thve one predicted by the model.
The size of the deviation is put in relation witte tquadratic sum of the model standard
deviation which takes into account the interpolatoror. The sensitivity of the procedure
thus increases for measurements close to the bhMailmodel historical operating
conditions for which the machine has a reproduaidponse. The module has a deviation
concentrator that calculates the quadratic sum bsfexved deviations on the set of
monitored indicators. An indicator can be an in&taaous measuring channel value, a
spectral line value, a camera pixel value, etc.réfoee, a scaling method is needed for
each indicator before computing the quadratic stitheodeviations. For a given operating
conditionO;, the sum of the snapshot deviations has a constamzero, magnitude when

computed on several snapshots: the average devfatithis operating condition is written

d(O;). When carrying out the comparison, the quadiititance of the snapshot with

the model prediction is compared wiﬁ1(0i), in order for the average behaviour of

distances to be centered at zero. Moreover, fargelnumber of indicators (> 30), the

deviations from E(Oi) will tend towards a normal (Laplace-Gauss) disiidm.
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Therefore, this leads to a single global indic#ibat is distributed according to a centered
normal distribution, which facilitates establishitigeshold values relative to sensitivity

and a desired proportion of false alerts.

Clustering model

The model must capture the machine’s responsermalmperating conditions for a set of
such conditions. This comes down to a mapping prablwhich should give a
representation of an indicator as a function of ttwordinates defined by the

aforementioned conditions. Linear binning wouldle simplest way to achieve this. For

instance, in the above example wh&e={280 MW, 40 MVAR, 10 °¢, in order to bin

an operating condition, the individual domains dobke partitioned in the following
manner from 100 to 300 MW by increments of 10 M\Wani -20 to 100 MVAR by
increments of 10 MVAR, and from 0 to 35 °C by inoents of 5 °C. Considering all the
possibilities in these three dimensions given Himing scheme, the modelling support
will then contain close to 2000 bins which will forost of them be empty because the
accumulated historical data of running conditiond mot have covered all the defined
operating bins. Linear binning might be useful mear two dimensions, but in multiple
dimensions, as required for a hydro-electrical potidn unit, it is necessary to have
narrower bins where the machine is most often apeyahus requiring nonlinear binning.
Operating conditions defined by several indicatargl a filling procedure based on
historical data suggests using clustering to repkacning: an adequate clustering method
automatically adapts the sampling grid in the demafi the operating conditions as a

function of available information.

The proposed dynamic clustering approach [3] islamo thek-means [4] methodology.
The procedure provides a way to partition the sgdd¢be equipment’s response but also
to determine its reproducibility as a function adffetent operating conditions. In the
multidimensional representation, a cluster canrimetstood as a group of points around a
center of gravity, where each point correspondssisapshot. For a given cluster, the center

of gravity is given by the means of the differentlicators, taken over the snapshots
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contained in the cluster. The decision to includeapshot in a given cluster or not is based
on Euclidian distances calculated in the operatomdition spac® and the decisions are
used to compute the mean and dispersion of eadtatod Given that the measurement
scales are different for different signals (or aadors), a scaling operation is performed in
the domain of the response indicatBras well as the domain of the operating conditions
O. The set of multiplicative scaling factors is weit asM. For example, one could have

M ={R;0} ={(s00um)" .(19" ( 1" ( 100 ¢ 300 MW (, 100 MVAR (, 30)%,
corresponding to {displacement, acceleration, a&reéibn, temperature, active power,
reactive power, temperature}, where the symbaob andicates the separation between the
scaling coefficients of the response and thosehefdperating conditions. The scaling
problem is common to all monitoring systems thambme heterogeneous signals: a
judicious scaling procedure is fundamental for ti@nitoring methodology to work well
[5][6]. In practice, the maximum and minimum valuEsthe indicators can be used for
scaling since some of them will be known and otkarsbe adjusted sequentially from the
accumulated snapshots. The multiplicative factarstbus be adjusted from the difference
of the maximum and minimum of each indicator, dedained by a weighing strategy for
the different indicators. For example, decreasinguétiplicative factor of an indicator has

the effect of decreasing the importance of thaicetdr.

The number of clusteid determines the sampling resolution fixed at thigirsing stage.
The population cluster is given by the number @fpsihots included in the cluster. To each
cluster corresponds an operating condition for whice equipment response and its
dispersion are estimated. In order to adequateimate the dispersion of a cluster, many
shapshots are necessary, therefore the numberusferd is determined to reach a
compromise between the cluster populations and ghmpling resolution. This
compromise also needs to take into account compatiitme and the required memory
which increases with the number of clusters vianttoglelling and interpolation modules.
In the clustering procedure, the fidtsnapshots initially form the! clusters. Afterwards,
the module groups each new snapshot with the dlabester according to a Euclidian
distance in the operating condition sp&cdf a new snapshot is too distant from the current

clusters, the two closest clusters are mergedanéoand a new cluster is born, containing
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the new snapshot. The result of the dynamic clurgigrrocedure can be slightly different
according to the arrival order of the snapshoesntiethod is suboptimal since it considers
the snapshots sequentially and not the whole lysibsnapshots simultaneously. For a
history with a large number of snapshots, it is meatlistic to consider simultaneously all
the snapshots. The clustering procedure stops vemewnigh historical data has been
processed to determine the equipment’s initial sasp. Monitoring the equipment’s
behaviour can nonetheless start before the chaiatien of the equipment’s response is

completed as long as a population of some clugiees a measure of their dispersion.

Interpolation by kriging

In the case of a machine that is always runningeclm the same operating condition,
clustering can be summarised by a single clustétwprovides a mean machine response
and the dispersion about this response. In this, Gas interpolation step is not required
before the comparison stage. Otherwise, when thdemeaptures different machine
responses associated with different operating ¢tomdi, interpolation can efficiently use
the discretized information support. For equipnmmanhitoring, the snapshots have intrinsic
properties which restrain the type of interpolatibat can be used. An important of these
properties is reproducibility: for two neighbouringerating conditions, even possibly the
same operating conditions, the response is repiiol@ulbut not identical. Interpolating
splines could therefore not be used in this givemext since it would be impossible for
the method to approach two responses with identparating conditions; alternative
methodologies would be smoothing splines or legstges regression, which can treat the
intrinsic variability of the responses. It is alsecessary to consider that in the model, there
are clusters which have large populations and sthenall ones. The uncertainty of a
response associated with a cluster is roughly glwernhe dispersion of the snapshots
divided by the square root of the cluster poputatithe interpolation procedure therefore
needs to take into account these sources of umugrt&riging, as an unbiased linear
interpolation method, seems to be a good solufftnis methodology, used in a wide
variety of disciplines, was first proposed by Daerhardus Krige, a South African

statistician and mining engineer in 1951. The metkas formalised by the French
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mathematician Mathéron [7] who showed that its i@pgibn gives best linear unbiased

estimates.

The important point is that kriging takes into asetthe distances between an interpolation
point and the different clusters, but also the uwagaty associated with the clusters. Since
an interpolated value does not have any meaningowitan associated uncertainty, the

interpolation module evaluates a standard deviatoyneach interpolation point. The

module produces two vector£(0i), which gives the estimated response for each

indicator, andC(Oi), which gives the standard deviation of the int&pon procedure

for the different indicators, all quantities exmed in the original units.

Multivariate comparison

The comparison module (circled minus sign in Fig@jnputes the distance from the
normal machine behaviour by comparing the meastake with the predicted value from

the model. A multidimensional distance is calcudatethe space with dimensions defined
by the indicators which characterise the machimesponse. The total instantaneous

response distance is given by

d, :H(Ri_E(Oi))[MH:\/an;((ri,n_e(Oi)n)mnn)z 1)

whereN is the number of indicators. It measures the disancy between the respoiige

of snapshot i and the estimate in the operating condition neighbourho@, with M

representing the scaling vector. This total distarscthe quadratic combination of the
observed deviations of the different indicators amdcompared to the average total
response distance
d, =< Y d with jOAIfO, =0, )
leDA
i0A
for a similar operating condition. In practicethe group response has dissimilar dispersion
for different operating conditions, it is recommeddo consider a single average deviation

for the whole set of operating conditions. Thisdie#@o a faster monitoring initialisation
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and also a faster algorithm. The distance of isteteis becomed , the observed average
total response distance for the whole set of opgyabonditions, i.e. the average okan

equation (2). The quantity to be monitored is @iative deviation

W=a -d 3)

which represents the total instantaneous respastande of the last snapshatlative to

the observed average total response distance.feéspanse made up of several indicators
and when the machine behaviour is reproducibledisteibution of the quantityv tends

to a centered Laplace-Gauss variate with its standiaviation given by

(4)
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Figure 3: Sequence of total instantaneous response distia(top) and the corresponding
probability density function (bottom) with the mastent relative deviation for snapshot

i. Here, the alert threshold is set at about2.tsee equation (5)).

The top part of Figure 3 illustrates the last coteduotal instantaneous response distances
(equation (1)) while the bottom part shows the tasdtive deviation with respect to the
probability density function of the observed totiviations. To take into account the
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interpolation standard deviatioﬁi;(Oi ) , itis added quadratically to the standard deorati

in (4) such that

a':\/02+‘C(Oi)[M‘2 (5)
becomes the standard deviation used in the congpan®dule to detect anomalies. A
multiple of the global standard deviati@n' will thus determine the alert threshold (see
Figure 3). The introduction of the interpolatioarslard deviation in the expression of the
global standard deviation takes into account trexipion of the interpolation, which
depends on the dispersion of the historical datansarised by clusters and also the
interpolation distance relative to the clusterse EbtB in equation (4) can leave out data
for which the relative deviation from the averageal response distance is excessively
large; it is thus possible to avoid introducingiashthat could lead to an increase of the
standard deviatioorwith the appearance of a defect. This can be dgsing for example
the criterion

w| >3 . (6)
Indeed, in the presence of a real defect, of a urgasproblem or a transcription error in
the database, the relative deviation increasesptiprand should be reported to the
operators and be discarded in the computations, &ie presence of a progressive defect
can lead to a drift in the computations of the niaahel the calculated distances. Therefore,

it is highly recommended to stop the clusteringcpaure when the machine response is

reasonably modeled, or in other words, has captwmest of the operating conditions.

From a multivariate perspective, for an operatiogdition O,, the machine response

without noise will be close to the center of thatser plot corresponding to the snapshots
obtained during the given operating conditions. WMite increase of the number of
shapshots, the center of the scatter plot will tewdards a response without the random
contribution, which follows from the law of largaimbers. Contrary to what is usually
accepted, for example with principal component ysial[8][9], the multivariate scatter
plot is not full but hollow. As illustrated in theottom part of figure 3, the probability
density function of having a snapshot at a certistance from the model prediction is

10
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given by a “hyperspherical” shell for a fixed op@rg condition. In the case of changing
operating conditions, in a multivariate contexg ttomain of the machine’s response is a
manifold and the scatter plot resulting from themshots will form a shell around the
manifold [10]. The corresponding probability degsfunction, perpendicular to the
manifold, is Gaussian at a constant distance floermntanifold (see bottom part of figure
3).

Case studies

Loss of a hydraulic turbine runner cone

During an inspection on April 24th 2015, the lo$s dwydraulic turbine runner cone was

recorded (see Fig. 4).

Figure 4: Picture of the cone of the propeller seen fromdftadt tube, before (left) and

after (right) loss.

The cone is located at the end of the hydraulidilprof the propeller to minimize losses.
The cone also reduces the amplitude of the vortge,ra physical phenomenon that
decreases the performance of turbines and causgsadtions in pressure and electrical
power. The loss of a cone results in a decreateeddfficiency of the order of 0.6% and a

slight increase of the vibration.

11
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Figure 5 shows the results obtained with the pregasonitoring system. In the main
screen of Figure 5, the relative deviation (equetB)) is plotted in white for roughly 80000
shapshots, the red and green traces represenpplee and lower confidence bounds (or
alert thresholds) fixed here at ¢4 (see equation (5)). The path of the relative deana
indicates an emerging problem with the cone fronghty the 57000th snapshot onwards,
where the 30 bolts are most probably giving awag after the other, with an acceleration
of the process when fewer bolts are left (see $@8000) with the loss of the cone
around snapshot 71000. The variations of the t4onfidence intervals (red and green

traces) for the first 10 000 snapshots can be eqiaby an important contribution from

the interpolation standard deviatiorG(Oi), which stems from a fairly short history of

shapshots treated by the clustering module.

Take the example of a motor vehicle wheel havingnamalance. If we add on the rim a
very small weight, depending on the position okthieight, it can increase as well as
decrease the imbalance. However, when one of tsiebidlts holding the propeller cone
was lost, it was a reduction in the imbalance twaurred: a reduction in vibration was
observed for 22 days (Figure 6, roughly snapsh6&)8-68000). At the next bolt, the
vibration recovered close to the usual level (Fegbirroughly snapshots 68000-70000) and
two bolts lost later, the vibration increased (Feg6, after snapshot 70000).
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Figure5: Relative multidimensional deviation observed dwer years, from August 2013

to June 2015, where cone loss occurs on April 2352
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Figure 6: RMS vibration observed on the turbine bearing deam the "x" direction
(power house axis seen from the downstream sidéhéosame recordings as those shown

in Figure 5 with the same cursor position.

Figure 7, which zooms in on the last sequence apsmots of Figure 5 (67000 to 73152),
shows exceedances larger tham'@ deviation of about 2 on the y scale) which start
around snapshot 68200 and last for more than 2§ idag row before the cone is lost (a
deviation of 5 on the y scale). The exceedanctseajlobal deviation are a result of several
indicators and this can be appreciated by the ianitons of the different indicators given
by the blue rectangles on the right side of Figliesd 7. Indeed, Figure 7 shows that
several vibration indicators (RMS, CR-CR) and theamshaft position (MOY in Figure
7).
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Figure 7: Zoom of Fig. 5 with the cursor placed on recomtsated shortly after the loss

of the cone.

Coming back to Figure 5, it should be noted thidva large “punctual” exceedances (in
the relative deviation) are present between 0 &@D55000 and 10000, and between
35000 and 40000. These exceedances can be explaireedold-start after the machine
was stopped for several hours: these could be rdisdawith the validation module by

13
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extending the idle time delay when the machinessarted. Figure 8 shows a close-up of
the large exceedance between snapshots 35000 aA4,46hich features two slopes of
stabilization. The first one is due to the equilibn temperature of the alternatarX2h)
and the second one to the equilibrium temperatéitden structure £ >12h). For these
transitory states when the machine restarts,suggested to increase the alert threshold
according to a relevant profile, for example thensaf exponentials with decay constants
of r=2h andr =12h with a delay of an hour. These “punctual’eedances can necessitate
adjusting the alert thresholds at high values erauprofile as described previously during
transitory operations. The proposed global momgpsystem could thus have adjusted
alert thresholds in order to better keep trackefrmachine’s behaviour even in transitory

regimes.
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Figure 8: Momentary overrun of thedithreshold explained by the group's warming

response following a start occurring after beirapped for several hours.

In another case study, dating back nearly 30 yeara hydraulic machine, a mechanical
slack appeared on the turbine guide bearing wighréisult that the relative displacement
measurement between the bearing and the shafteadtasad considerably since the guide
bearing moved with the shaft. The increase of theation on the two other guide bearings
was not enough to exceed the threshold of alarms:tlte manager of the power station
which, when walking by the machine, noted a wormsdknocking noise. It seems relevant
to consider not only increases in vibration bub@bnormal decreases. With the proposed
system, the increase as well as the decreaseinfli@ator has a similar statistical weight

in quantifying a change in behavior.
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Breakage of a thrust bearing

The damaged generating unit is a 390 MVA vertitafsFrancis runner type. The most
likely interpretation of the results is that the&kage took place in two steps: a degradation
of the thrust bearing followed several months latethe total destruction of the bearing
Babbitt. Figure 9 shows that the relative deviaganeeds 16" (a deviation of roughly 2

on the y scale) after the first event and thatfthal breakage of the bearing leads to a
relative deviation which exceeds &0 (a deviation of roughly 17 on the y scale), clase t
15 times the alert threshold ob4. It should be noted that the machine underwent an
emergency shutdown at the end of the snapshotusead an extremely high bearing

temperature.
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Figure 9: Relative multidimensional deviation observed aves years.

Figure 10 gives a sequential account of the mathewslution as measured by the relative
deviation and the contributions of the differerdigators to this quantity. Panel (a) shows
the contributions of the indicators for snapshafote the first breakage (snapshot around
45000), panel (b) gives the contributions afterfirst breakage (snapshot around 50000),
and panel (c) shows the contributions after thal tdestruction of the bearing Babbitt
(snapshot around 110000). The deviation from nobrhhviour (see Figures 10 b and 10
c) is clearly manifest for all vibration measurertseand some pressure measurements, as
can be seen by the contributions of the differedicators given by the blue rectangles on
the right side of these Figures. The vibrationgrat appear to be similar for several of the
vibration indicators, as illustrated in Figure However, the most obvious signal to show
signs of deterioration is associated with the gaftmachine displacemenmn. the vertical

acceleration and dynamic water pressure in theawidrflow channel. For the sequence
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of later measurements, the vibration level incre@st® 6-fold from the earlier levels while

an increase of roughly 50% is observed for thedhtebration indicators at guide bearings.
Since only the thrust bearing was damaged and ecdef this support system causes
mainly vertical vibration, we conclude that the @uof the vibration at the first breakage

also came from this bearing.
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It needs to be pointed out that the alarm threshofdhe machine’s protection system are
adjusted for starting conditions and for vortexe@perating condition (small wicket gate
opening): the vibration levels and observed tentpesa between the two breakages did
not exceed the aforementioned alarm thresholds ifildicates clearly the advantage of
treating many indicators simultaneously in a glabaliation measure. Taken individually,
each indicator approaches an alert threshold witbaoeeding it, while when they are
grouped together, the indicators lead to a globalation 10 standard deviations from the

historical behaviour.
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Figure 11: RMS amplitude of pressure at the inlet of theapiase (top), acceleration

(middle) and displacement at the turbine guideibgdgbottom).

Conclusion

We have presented a new global deviation indidatanonitor a machine’s behaviour and
detect abnormal functioning in order to alert aerapor. This global deviation indicator,
which combines information from several indicatogsies a result that is statistically
sound and more sensitive in order to quantify dema from normal behaviour.

Furthermore, both an increase and a decreaseiofi@ator contribute a statistical weight
similar with regards to the quantification of a nga in behaviour: a failure mode which
manifests itself by a decrease, or an increasena or several of the indicators will

contribute to increase the global deviation indicat

17



22nd Iris Rotating Machine Conference May 6-9, 2019

With the proposed global deviation indicator, extaseces due to machine starts and
abnormal machine behaviour are better identifiedciwheads to a better monitoring
solution. At the present time, the methodologylheen used to process collected historical
data, but the next task is to apply it as a momigpsystem in an operational setting with
real-time observations. In future work, some aspetthe data validating module will be
improved to avoid occasional false alerts due tilieya or erroneous data. Furthermore,
with the accumulation of case studies, defectstifieth by the proposed monitoring
methodology will be analysed in order to providehable explanation for the failure

mode.
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