

Centre d'Ingénierie Hydraulique

BALANCING OF HYDRO STATOR WINDING IN CASE OF MULTIPLE COIL BY-PASSING

EDF DATA FOR THE HYDRO FLEET

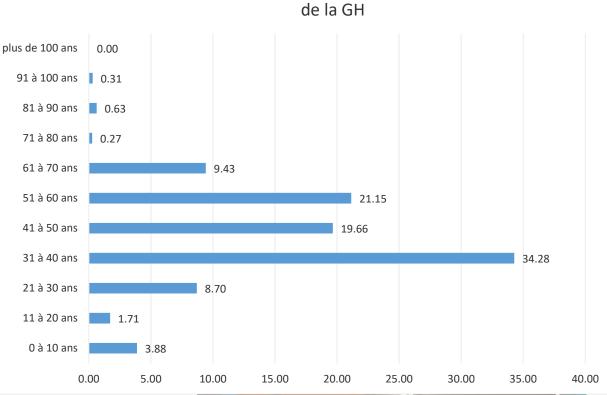
EDF is the largest hydroelectricity producer in European Union (after Norway, not part of EEC)

21% of EDF installed power; <10% of the energy production

1134 hydro units in 439 power plants

5000MW of PSP

Highest head (Portillon) = 1418 m



EDF HYDRO STATOR FLEET

Most Units date back second half of 20th century

Average age 50 years +

Stator Fault tend to occur and service must resume fast

Répartition en % de la puissance en fonction de l'âge des stators

STRATEGY FACING AN EARTH FAULT

Rewind

Effective

- But long lead time
- □ Cost
- Sometimes compulsory if winding badly damaged
 - Case of multi phase fault

STRATEGY FACING AN EARTH FAULT


Replace faulty coil or stator bar

Effective

- But access to fault zone sometimes complicated
 - Case of fault at a bottom bar
- Need to have spare coils or bars in good state
 - Spare coils are as old as original winding
 - Storage condition may be questioned
 - Spare coils need to be tested prior to usage
- May require rotor removal or at least pole removal

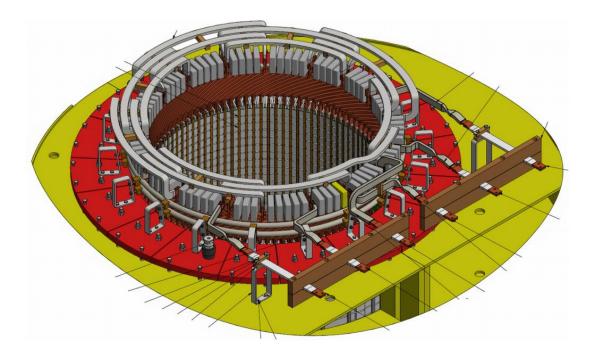
Rather cost effective

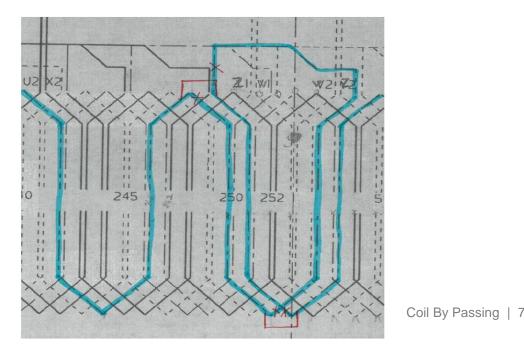
Takes several weeks to undertake

STRATEGY FACING AN EARTH FAULT

By pass the faulty coil

- And Keep operating with by passed coil
- Sometimes several coils are by passed on same machine
- Applicable to any machine
 - Though beyond 100MVA, operators are reluctant
- Cost effective
- Repair takes a few days (10 +/-)



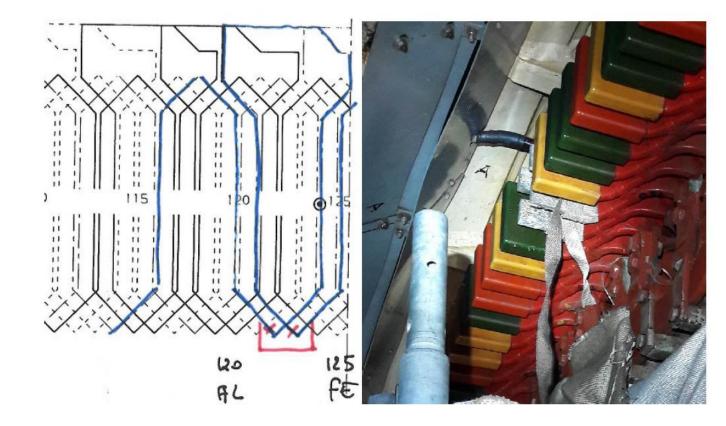

COIL BY PASSING

Is a quick way to resume service

BUT a few issues to manage

- Locate fault
- Use proper winding diagram
- Identify faulty coil to be by passed
- Hire skilled winder
- Identify balancing coils should vibration or over heating or voltage be out of bearable condition

COIL BY PASSING PROCESS


- Locate fault bar or coil
 - Burn and smoke
 - Dichotomy with Meggering
- Use winding diagram to draw by pass circuit
- Check on site potential by pass area
- Manufacture by pass copper segment
- Weld by pass and insulate
- Run machine
- Measure vibration off load and on load
- Measure voltage
- Measure phase and neutral current
- Monitor winding temperature

COIL BY PASS BALANCING

- By passing a coil modifies stator flux
- Hence has an impact on
 - Phase Voltage
 - Balance of phase voltage is no longer true (amplitude and angle)
 - Criteria 5% max
 - Current in between parallel paths at no load
 - Current in Neutral point
 - □ Air gap forces
 - Balance of airgap forces
 - Vibration load dependant
 - Might lead to staor or rotor attachment fatigue
- Impact is more sensitive if

Winding has several parallel paths

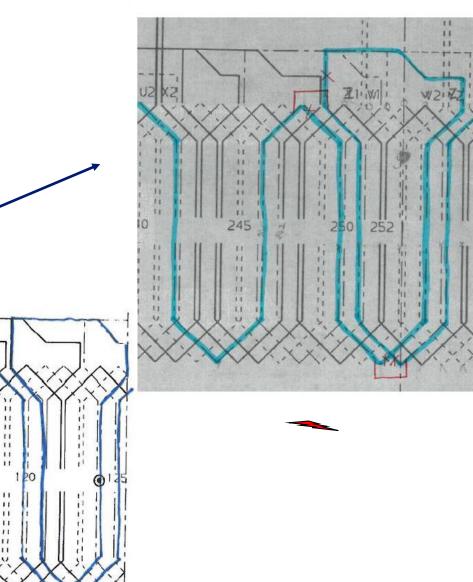
MITIGATION MEASURES WHEN BY PASSING COILS

- First model the electric diagram
- Calculate Voltage difference
- If greater than 5% between phases or parallel, then balancing is recommended
- Balance voltage in other parallel paths
- And in other phases
- May lead to several other by pass chosen to balance both voltage amplitude and angle
- It is an iterative process to find best option
- Using an automated tool makes the job much easier

- Calculate magnetic pull
- To Balance magnetic a coil must be by passed on same phase at ~180° (mech)
- It increases the voltage unbalance
- to be done if vibration or bearing condition is not at all suitable

 To limit by passed coils, compromise between voltage and magnetic pull balancing is key

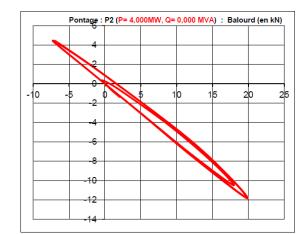
BALANC PASSED

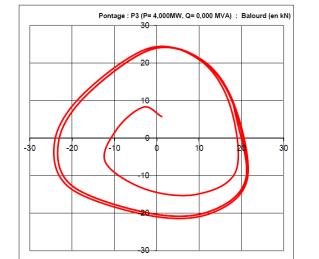

BALANCING BY PASSED WINDING								tre (m) (tor (m)	Symbole Re Ri Ra Np Np	Valeur 1,367 0,35 1,05 8 120		Le He	2π/Np	Nombre de s demi-résista Résistance d	Stator : ircuits en // stator : pires par bobine : nce d'une section (Ω) : le neutre (Ω) Rotor :	1 0,000144 500
Automated tool								e (m) ad)	Ef Rp Tp	0,026 1,024 0,35			EP		pires par pôle : ircuit inducteur (_Ω): r nominal (A)	49 100 600
 Makes calculation faster 							largeur du pôle (m) épaisseur du pôle (m) hauteur des bobines épaisseur des bobine		Lb Ep Hb Eb	0,499 0,07 0,176 0,08	Tp.*		E		nombre d'encoches nombre de circuits	<u>120</u> 1
							petit rayon du pôle (m) largeur d'encoche (m) profondeur d'encoche (rp Le He	0.9	Rp Ri Ra F		Ra Re	Angle en deg Tension Com Tension Sim		12 10,3 5,94670777
Can be computed with excel							(en kN)		Hc L	0,05485 2,1		× ×			Créer la Machine	
 Examp one by Work tabalanc 	v pass able t	o find	r													
	Parar	nètres Réseau	-10	0 10 20 _1			Courant crête dans les circuits (A)									
			1		2026	tension (Vett)					Phase 3	P (MW)	Resulta	Résultats mécaniques balourd moyen (N) balourd variable (N)		
Ca			co	Ph ourant (Act)		ension (Ve	g)	Neutre Ast	Phase 1	Phase 2	Phase 3	P (MW)		n (N)	balourd variable	e (N)
Ca: n°	• • • • •		h	ourant (A _{ett}) I2 I3	U1	U2	U ₃		C1	C1	C1	P (MW)	balourd moyen horizontal	vertical	horizontal	vertical
		00 19,800	h	ourant (A _{eff})	te			Ast		C1		P (MW)	balourd moyer			

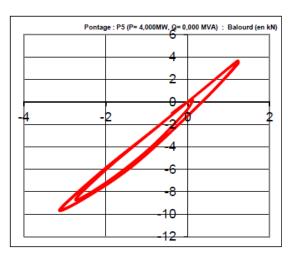
EXAMPLE OF BY PASSED WINDING

115

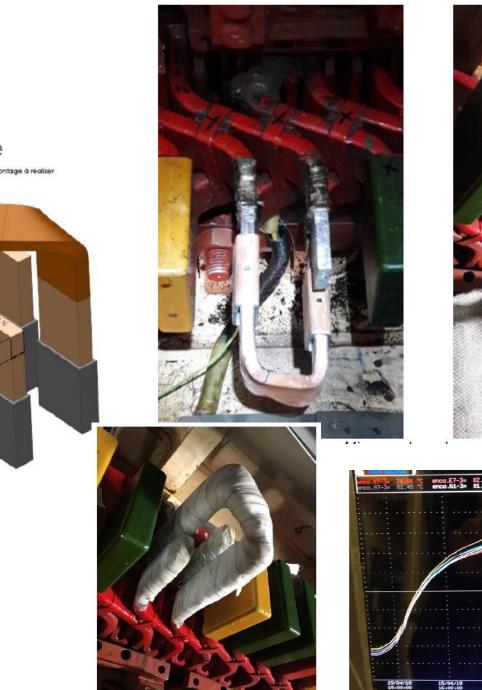
RD AL


- Case of a unit with 2 parallel per phase
- 100rpm; 252 slots; 3.6kV; 36MVA
- Stator earth fault on ciruit 1
 By pass of faulty coil in slots 2 and 251
- Balancing of circuit 2
 To balance voltage between circuit
 And try to balance magnetic pull
 By pass of coil 124 /121



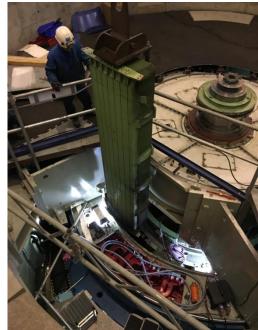

EXAMPLE OF COUNTER INTUITIVE IDEA

- Balancing magnetic pull
 Original pull vector with one by pass
- One common idea is to by pass coils in other phases 120° (mech) apart from faulty coil.
- It tends to center the pull force but not to cancel it
- Because stator current in each phase are shifted 120° elec so the force vector are also shifted in time and never cancel out at any given moment
- Balaning pull with a by pass on same phase 180°mach apart from original fault



REPAIR PROCESS

- Actual by pass must be implemented on the stator winding
- Phase circuit must be open
- By pass shunt must be desig manufactured and soldered
- Insulation must be applied
- Hi Pot
- Commissioning test
 - Vibration check
 - Temperature measurement of stator winding



CONCLUSION

- Coil by passing can save the day after a stator earth fault
- It can be applied to many generators
- Considering phase voltage, circulating current and vibration mitigation measure can be applied using balancing technique
 - Balancing thanks to relevant by passed coils requires some calculation
 - Some ideas are misleading/counter intuitive
 - A spreadsheet calculation helps the job

