Overhaul and repair management of a strategic generator in Western Australia

Vikas Bhandari

Machinemonitor, Australia

May 2022

Co-author: Ron Scollay, Principal Engineer CPEng, Machinemonitor

Generator Overview

Generator in-situ

Nameplate details Shinko 6970kW 7600kVA 6.6kV 831A 50HZ 4P 1500RPM 0.80PF EX 60V 7.2A

Condition-based Assessment – Online PD Testing

Trend of Qm

Condition-based Assessment – Average Trending

TREND BEHAVIOUR - W PHASE

Five sessions-moving average trends show an increasing behaviour of PD amplitudes for phases W, while phase U and V shows a stable behaviour. Qm average exceeds the Qm average of similar machines

machinemonitor' first in I.

Roof removal to lift out generator

Risk-based Assessment

- Risk based Maintenance (RbM) uses risk for decision making and continuously improving the asset performance. It is used to select which assets a maintenance program should target.
- Visual inspection and suite of electrical testing was performed to identified the condition of stator winding insulation system.

Visual Inspection

Offline Electrical Testing in-situ

- Insulation Resistance and Polarisation Index
- Step Voltage Test
- Dielectric Dissipation Test up to 125% Phase to Ground Voltage
- Offline Partial Discharge Test
- Stator Winding Resistance Test
- Machine Risk Assessment

Risk Assessment

Component	Failure Mechanism	Evidence derived	Contribution	Risk vs
	identified	from	to overall risk	Consequence
			assigned	
Stator winding	Abrasive material attack	On line PD	51%	Medium
		VI Slot		
	Slot discharge	On line PD	24%	
	Contamination	On line PD	12%	
Rotor Winding	Contamination	Visual inspection	100%	Medium
	Chemical attack			
	Abrasive Material Attack			
Stator Core	No significant failure			
	mechanism			

The on-line PD measurement analysis suggested end winding discharges on the W phase supported by visual evidence of grease deposits and discolouration seen on the coils at the slot exits and between the phase groups. The risk rank is medium, with internal surface contamination as the major contribution to the operational risk.

machinemonitor'

lectrical Asset Reliability Management

Issues to be addressed

High level PD activity	 Discoloration at the stress-grading junction indicating surface discharge Indicative of endwinding discharge 			
Oil Migration	 Oil leakage and pooling inside bearing housing Ineffective machine sealing 			
Surface contamination	 Grease deposit at slot exits and between HV coils in endwinding Dirt and grease contamination on wedges 			

14-Days Overhaul

Audit Plan

Prior to Decommission

- Online PD Testing
- Vibration Analysis

Electrical and Mechanical Survey

• Electrical Testing and Mechanical Checks

Repair and Assembly

• Detailed cleaning and repair as per the specification after an opening report

Static and Dynamic Testing

• Final testing and test run to qualify the overhaul

Liaison with OEM

- SINFONIA to involve to provide instruction on machine seal installation.
- Assembly of machine and bearing seals as per OEM.
- Instruction to qualify the sealing, torque setting and pressure equalising hoses.

Repair Assessment - Bearing

Insulated liner on DE bearing was found damage.

Missing hemp packing to create a pressure differential to stop oil migration from bearing to the machine chamber

Repair Assessment – Stator Winding

Moderate dirt contamination between two different phase coils on the stator endwinding, causing endwinding discharge.

Grease build up near stress grading junction (creating arcing, resulting on discolouration). Vaseline looks like black substance was also an indicator of loose wedges.

Repair Assessment – Stator Core

Dirt and grease contamination on the surface of stator wedges and inside the radial ventilation duct. Greasing was identified at the slot exits where wedges were found loose, broken and missing.

Oil strains dripping from the back iron core and on the keybars. Oil pooling at the bottom of stator housing.

Repair Assessment – Stator Core

Repair Assessment – Heat Exchanger

Compressed gasket causing leakage. New gasket was installed during the overhaul.

Tubes were partially blocked with plastic bags and foreign materials. All tubes were water pressure tested and cleaned.

- Insulation Resistance and Polarisation Index
 - Stator Winding: Minimum IR = $16.350G\Omega$, PI = 5.57
 - Rotor Winding: $IR = 5.0G\Omega$, PI = 1.75
 - Field Winding: $IR = 12.6G\Omega$
 - Exciter Rotor: $IR = 6.43G\Omega$

The test was conducted as stated in IEEE43 to meet the minimum requirement to identify any insulation damaged caused by the cleaning prior HV testing and followed by generator assembly.

• Dielectric Dissipation Factor Test (Tan Delta)

Power Factor Vs Applied Voltage

The test was conducted as stated in IEEE286 power factor and tip-up were improved.

• Stator Corona Probe (TVA Probe) Test

Each slot was scanned with the PPM-97 Corona Probe. Most of the slots were qualified as having low readings at 5-10mA. The average reading was 11mA with 4 slots had areas measured up to 45mA. The maximum reading recorded was 90mA at slot 43.

 Rotor dynamic balancing at G1.0 after Cleaned and baked at 130°C

Run test as motor

Run test as motor

Run test as motor

Oil Seal Evaluation

3 pressure point to record the differential pressure while machine was running to qualify the sealing.

machinemonitor[.]

Electrical Asset Reliability Management

No oil leakage or migration identified inside the housing

Online Partial Discharge Testing

machinemonitor

lectrical Asset Reliability Management

own Author is licensed under

During the PD assessment, the partial discharge activity after the overhaul was improved and found relatively lower on the original line side of the stator windings.

IMPROVE

Final Assembly

Conclusion

- Generator was successfully commissioned and coupled both sides onsite.
- Hemp packing qualified the machine seal
- Online Partial Discharge Activity was reduced.
- Broken and missing wedges were fixed.
- Grease and dirt contamination was cleaned.

machinemonitor[.]

Electrical Asset Reliability Management

Going Forward !

- Machinemonitor to perform following condition-based assessment:
 - Online partial discharge testing
 - Measure differential pressure on bearing
 - Internal Visual Inspection

