

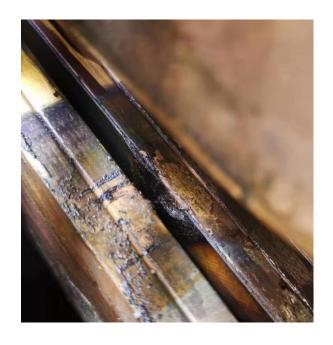
Study on cause analysis and detection method of inter-turn short circuit fault of large turbine generator rotor

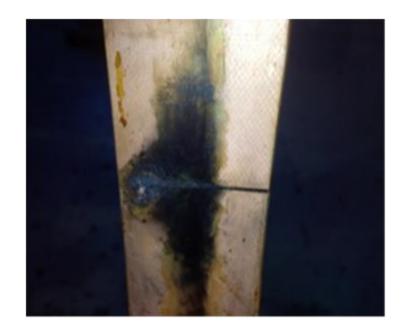
ZHAN LIU

Xi'an Thermal Power Research Institute

- 1, Introduction
- 2. Analysis of rotor insulation
- 3. Analysis of detection methods
- 4. Diagnosis case
- 5. Conclusion

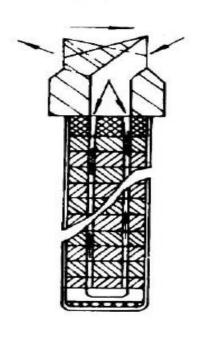
Introduction




2022/6/2

Introduction

The inter-turn short circuit fault of rotor winding is a common fault.


0

Analysis of rotor insulation

Analysis of rotor insulation

The cooling design of the rotor winding grooves of large turbine generators with 600MW and above capacity class is shown.

Analysis of rotor insulation

As to in-slot windings, the general inter-turn failure occurs mostly near the cooling duct or at the inter-turn insulation stitching region

Analysis of rotor insulation

Failure spot aroud the corner

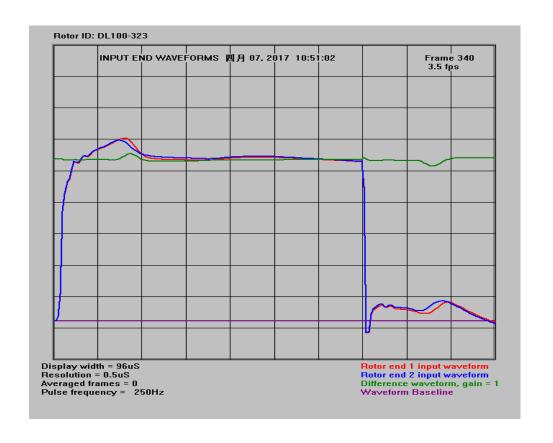
Displacement of the inter-turn insulation

Analysis of detection methods

Detection methods

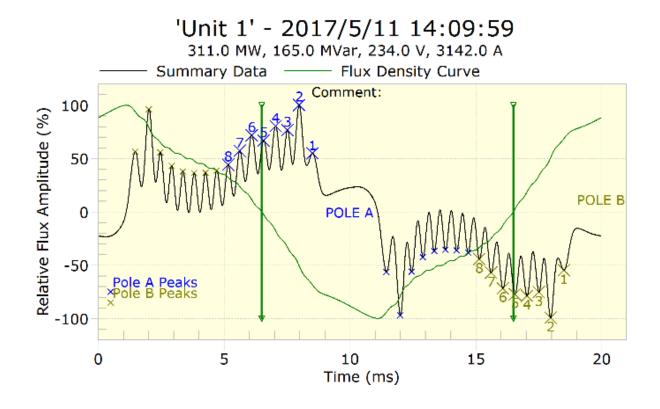
Off-line	On-line
DC resistance	Detecting coil waveform method
AC impedance test	Operation parameter comparison method
Polar voltage balance method	
RSO test	
Other	

Diagnosis case



model	Rated capacity
QFSN-600-2-220	667MVA/600MW
Rated rotor voltage	Commissioning time
431V	2010年11月

2022/6/2


RSO test

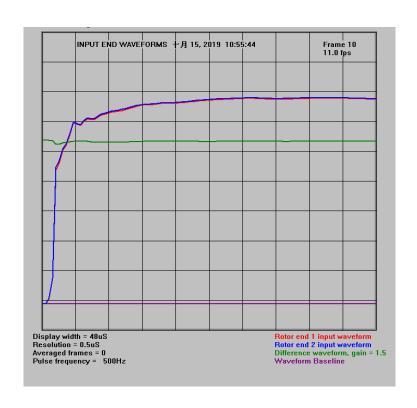
Detection coil waveform method

Detection coil waveform method

Table 1 · Result of the rotor flux test

Coil₽	Pole-1₽	Pole-2₽	Feature-value ₄	limit₽
143	55.2₽	-54.9₽	0.47%₽	15% ₽
2 ₽	99.9₽	-99₽	0.88%₽	8% ₽
3₽	83.2₽	-81.2 ₽	2.41%₽	8% ₽
4.₽	86.7₽	-85.5₽	1.42%₽	8% ₽
5.₽	78.5₽	-79.5₽	1.18%₽	8% ₽
6₽	67.1₽	-66₽	1.68%₽	8% ₽
7₽	49.4₽	-49.1₽	0.49%₽	8% ₽
8₽	33.9₽	-40.1₽	15.18% ₽	8% ₽

NOTE: The feature value and limit in the table are calculated according to formula (6) and (7) \rightleftharpoons


Failure spot

Test after repair

Test after repair

'Unit 1' - 2019/12/6 13:33:58

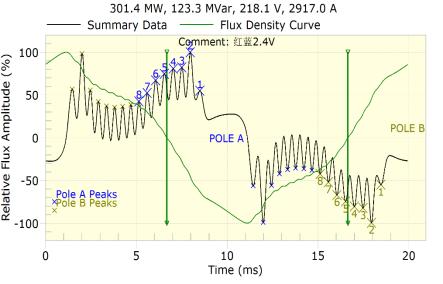


Table 2 Result of the rotor flux test after repair

Coil₽	Pole-1₽	Pole-2₽	Feature-value+	limit₽
1₽	54.9₽	-55₽	0.32%₽	15%₽
24⁻	99.9₽	-99.5₽	0.44%₽	8%↩
3₽	82.2₽	-82.1₽	0.04%₽	8%₊⁻
4.₽	80.8₽	-80.6₽	0.33%₽	8%4⁻
5₽	74.5₽	-74.7₽	0.17%₽	8%↩
6₽	67.1₽	-67.0↩	0.13%₽	8%₊⁻
7₊∍	52.2₽	-52.1₽	0.21%₽	8%4⁻
8↩	42.5₽	-42.4₽	0.19%₽	8%↩

NOTE: The feature value and limit in the table are calculated according to formula (6) and (7)

Conclusion

Conclusion

1 The RSO is sensitive and accurate in the diagnosis method of the insulation failure between the rotor turns in the shutdown state.

2 The detection coil waveform method is accurate and effective. It is recommended that the power plant be equipped with a detection coil sensor, which is carried out regularly during operation.

3 Other methods, such as operating parameter comparison method, AC impedance method, etc., can be used as auxiliary methods for fault diagnosis.

2022/6/2