

Off-line PD testing at various frequencies

Petr Mráz, HAEFELY AG, Switzerland

Current and voltage - our passion

1960s

30 kHz $\leq f_1 \leq 100$ kHz $f₂ \le 500$ kHz 30 kHz $\leq \Delta f \leq 400$ kHz

Year 2015

30 kHz $\leq f_1 \leq 100$ kHz $f₂ \leq 500$ kHz 1 MHz 30 kHz $\leq \Delta f \leq 400$ 900 kHz

Stray capacitance schematic

Figure 1: The stray capacitances in a transformer

Figure 2: The stray capacitances in a rotating machines stator winding

www.haefely.com / page 3 / 05.06.2024 / Petr Mráz

Frequency spectrum analysis

Figure: Time domain (left) and frequency domain (right) representation of two PD pulses.

Figure: Transfer impedance of the complete PD circuit with $C_c = 1$ nF, $C_{DUT} = 2$ nF, 1 uH in series with the capacitors, and 5 uH between C_c and C_{DUT} .

Frequency spectrum analysis

OD HAEFELY

The frequency spectrums of the 100 pC calibration pulse.

A step-by-step guideline for PD measurements is outlined as follows:

- Step 1: Checking the noise spectrum
- Step 2: Checking the calibration spectrum
- Step 3: Analysing the real PD pulse spectrum

HAEFELY

Figure 1: of the PD calibration pulse

Figure 2: Spectrum/FFT of the real PD pulse

Figure 1: The calibration pulse spectrum (top) and spectrum of the real PD (bottom) measured on a stator winding

OD HAEFELY

■ DUT: stator coil of a 6.6 kV, 700 kW motor with a total coil loop length of 2 m (end-to-end) with 3 turns.

CO HAEFELY

OD HAEFELY

Figure: Simplified equivalent LC circuit (top) and corresponding qualitative frequency response (bottom) of e.g. a stator coil or transformer winding

Figure: Transfer impedance Z(f) (top) and capacitance curve C(f) (bottom) of the 6.6 kV stator coil. Note the resonance and the capacitance drop.

Table 1 Near-end versus far-end calibration using a 100 pC calibration pulse, where near-end calibration was considered as the reference.

Figure: FFT of the PD calibration pulse at the near end (left) and far end (right) of the 6.6 kV stator coil.

Figure: FFT of the PD calibration at 6.6 kV stator coil in the shielded room

Table PD calibration of the 6.6 kV stator coil.

Figure 1: 6.6 kV stator coil, PD Source 1 @ 4.2 kV, PRPD pattern @ 100 – 280 kHz (right), FFT spectrum of the PD pulse (left).

Figure 2: FFT of the PD calibration at 6.6 kV stator

OD HAEFELY

Top line, left to right: 100 - 280 kHz, 100 - 500 kHz, 500 - 2 MHz 16500-18000 0.552 0.08 pC

Bottom line, left to right: 3 MHz – 4 MHz, 7 MHz – 8 MHz, 16.5 MHz – 18 MHz

Figure 1: 6.6 kV stator coil, PD Source 1+2 @ 5.4 kV, PRPD pattern @ 100 – 280 kHz (top), FFT of the PD pulse (bottom).

Figure 2: FFT of the PD calibration at 6.6 kV stator

CD HAEFELY

Stator (3-phase motor), Helmke, 6 kV, 600 kW, Phase A

Measuring Frequency Range: 100 – 600 kHz

Figure 1: Q_{avg} = 5000 pC, PRPD pattern peak-avg = 7000 pC

HAEFELY

Stator (3-phase motor), Helmke, 6 kV, 600 kW, Phase A

Measuring Frequency Range: 100 – 250 kHz

Figure 2: Q_{avg} = 10000 pC, PRPD pattern peak-avg = 14000 pC

HAEFELY

OD HAEFELY

Discussion

- Term "induced" rather than "apparent" charge
- Direct relation between the charge at the PD origin Q_{Ω} and the charge at the DUT terminals Q_{τ}
- Charge transfer between the DUT terminals and the coupling capacitor is ensured by the PD calibration process.
- The ratio between the charge Q_T and the so-called measured charge Q_M at the measuring impedance is a measure of the sensitivity defined by the following relation: $\uparrow C_c$ and $\downarrow C_{\text{DUT}}$ results in \uparrow SNR.

Conclusions

- Checking the frequency domain of the PD measurement
- Setting the proper measuring frequency
- IEC 60270 highlights that for large test objects and test objects with windings the upper cut-off frequency f_2 shall be kept as low as possible
- ◼ PD measurement at higher frequencies is possible, but the quantification becomes difficult
- ◼ PD sources located further from the coupling capacitor tend to be omitted and the overall measurement plausibility becomes questionable
- ◼ Term «PD indication» rather than «PD measurement»

■ IEC 60270, chapter 4.3.4 Wide-band PD instruments

30 kHz $\leq f_1 \leq 100$ kHz;

 $f_2 \leq 1$ MHz;

100 kHz $\leq \Delta f \leq 900$ kHz.

NOTE 2 For test objects with windings like transformers and electrical machines the acquired frequency band may be reduced down to a few 100 kHz and even below. The upper limit frequency $f₂$ to be accepted for such kinds of test objects should be specified by the relevant Technical Committee.

- **ANSI/IEEE Std C57.12.90-2010 IEEE Standard Test Code for Liquid-Immersed Distribution, Power, and** Regulating Transformers
- **It recommends measuring in the range of 100 300 kHz or using even lower f₂ frequency**

감사합니다 Natick
<u>Obanke</u> Euxaploties Dalu C **Nank You Köszönöm Tack and Tack**

