

Off-line PD testing at various frequencies

Petr Mráz, HAEFELY AG, Switzerland

Current and voltage – our passion

1960s

30 kHz \leq f₁ \leq 100 kHz f₂ \leq 500 kHz 30 kHz \leq Δ f \leq 400 kHz

Year 2015

 $30 \text{ kHz} \le f_1 \le 100 \text{ kHz}$

 $f_2 \le \frac{500 \text{ kHz}}{1 \text{ MHz}}$

30 kHz ≤ Δ f ≤ 400 900 kHz

Figure 1: The stray capacitances in a transformer

Figure 2: The stray capacitances in a rotating machines stator winding

Figure: Time domain (left) and frequency domain (right) representation of two PD pulses.

Figure: Transfer impedance of the complete PD circuit with $C_c = 1$ nF, $C_{DUT} = 2$ nF, 1 uH in series with the capacitors, and 5 uH between C_c and C_{DUT} .

Frequency spectrum analysis

The frequency spectrums of the 100 pC calibration pulse.

Figure 1: of the PD calibration pulse

Figure 2: Spectrum/FFT of the real PD pulse

Step 3: Analyzing the real PD pulse spectrum

Figure 1: The calibration pulse spectrum (top) and spectrum of the real PD (bottom) measured on a stator winding

■ DUT: stator coil of a 6.6 kV, 700 kW motor with a total coil loop length of 2 m (end-to-end) with 3 turns.

Figure: Simplified equivalent LC circuit (top) and corresponding qualitative frequency response (bottom) of e.g. a stator coil or transformer winding

Figure: Transfer impedance Z(f) (top) and capacitance curve C(f) (bottom) of the 6.6 kV stator coil. Note the resonance and the capacitance drop.

Table 1 Near-end versus far-end calibration using a 100 pC calibration pulse, where near-end calibration was considered as the reference.

Calibrator @	30 – 130 kHz	100 – 500 kHz
Near-end	102 pC	99 pC
Far-end	111 pC	228 pC

Figure: FFT of the PD calibration pulse at the near end (left) and far end (right) of the 6.6 kV stator coil.

Figure: FFT of the PD calibration at 6.6 kV stator coil in the shielded room

Table PD calibration of the 6.6 kV stator coil.

Frequency Range (kHz)	Cal. Factor
100 – 280	14.566
100 - 500	8.397
500 – 2 000	8.494
3 000 – 4 000	6.491
7 000 – 8 800	1.804
16 500 - 18 000	0.552

Figure 1: 6.6 kV stator coil, PD Source 1 @ 4.2 kV, PRPD pattern @ 100 – 280 kHz (right), FFT spectrum of the PD pulse (left).

Figure 2: FFT of the PD calibration at 6.6 kV stator coil

100u S
31.6u E
10u S
3.16u
11u
31.6n
10on
31.6h
10n 31.6k 100k 316k 1M 3.16M

Frequency Range (kHz)	Cal. Factor	PD Source 1 @ 4.2 kV
100 – 280	14.566	40 pC
100 – 500	8.397	17 pC
500 – 2 000	8.494	7. 5 pC
3 000 – 4 000	6.491	19.7 pC
7 000 – 8 800	1.804	2.37 pC
16 500 – 18 000	0.552	0.08 pC

Top line, left to right: 100 – 280 kHz, 100 – 500 kHz, 500 – 2 MHz

Bottom line, left to right: 3 MHz – 4 MHz, 7 MHz – 8 MHz, 16.5 MHz – 18 MHz

Figure 1: 6.6 kV stator coil, PD Source 1+2 @ 5.4 kV, PRPD pattern @ 100 – 280 kHz (top), FFT of the PD pulse (bottom).

Figure 2: FFT of the PD calibration at 6.6 kV stator coil

100m S Frequency [Hz]
10m 31.6k 100k 316k 1M 3.16M 10M 31.6M

Frequency Cal. Source Range (kHz) 1+2 @ 5.4 **Factor** kV 100 - 28014.566 10.5 nC 5.36 nC 100 - 5008.397 500 - 20006.31 nC 8.494 3 000 - 4 000 4.94 nC 6.491 7 000 - 8 800 1.804 0.28 nC **16 500 - 18** 0.552 0.014 nC 000

Top line, left to right: 100 – 280 kHz, 100 – 500 kHz, 500 – 2 MHz

Bottom line, left to right: 3 MHz – 4 MHz, 7 MHz – 8 MHz, 16.5 MHz – 18 MHz

Stator (3-phase motor), Helmke, 6 kV, 600 kW, Phase A

Measuring Frequency Range: 100 – 600 kHz

Figure 1: Q_{avg} = 5000 pC, PRPD pattern peak-avg = 7000 pC

Stator (3-phase motor), Helmke, 6 kV, 600 kW, Phase A

Measuring Frequency Range: 100 – 250 kHz

Figure 2: Q_{avg} = 10000 pC, PRPD pattern peak-avg = 14000 pC

Analyzing the real PD pulse spectrum

Figure 1: The calibration pulse spectrum (top) and spectrum of the real PD (bottom) measured on a stator winding

- Term "induced" rather than "apparent" charge
- Direct relation between the charge at the PD origin Q_O and the charge at the DUT terminals Q_T
- Charge transfer between the DUT terminals and the coupling capacitor is ensured by the PD calibration process.
- The ratio between the charge Q_T and the so-called measured charge Q_M at the measuring impedance is a measure of the sensitivity defined by the following relation: $\uparrow C_c$ and $\downarrow C_{DUT}$ results in $\uparrow SNR$.

Conclusions

- Checking the frequency domain of the PD measurement
- Setting the proper measuring frequency
- IEC 60270 highlights that for large test objects and test objects with windings the upper cut-off frequency f₂ shall be kept as low as possible
- PD measurement at higher frequencies is possible, but the quantification becomes difficult
- PD sources located further from the coupling capacitor tend to be omitted and the overall measurement plausibility becomes questionable
- Term «PD indication» rather than «PD measurement»

International Standards Overview

■ IEC 60270, chapter 4.3.4 Wide-band PD instruments

30 kHz
$$\leq f_1 \leq$$
 100 kHz;
 $f_2 \leq$ 1 MHz;
100 kHz $\leq \Delta f \leq$ 900 kHz.

NOTE 2 For test objects with windings like transformers and electrical machines the acquired frequency band may be reduced down to a few 100 kHz and even below. The upper limit frequency f_2 to be accepted for such kinds of test objects should be specified by the relevant Technical Committee.

- ANSI/IEEE Std C57.12.90-2010 IEEE Standard Test Code for Liquid-Immersed Distribution, Power, and Regulating Transformers
- It recommends measuring in the range of 100 300 kHz or using even lower f₂ frequency

감사합니다 Natick Θ_{Danke} Ευχαριστίες Dalu 응