

Renaissance Las Vegas, NV June 17-20, 2024

324 Generator Failure Discoveries, Concerns, & Repair

W. Howard Moudy Director of Operations National Electric Coil <u>hmoudy@national-electric-coil.com</u> 724-787-4967 www.National-Electric-Coil.com

Background

- The Facility is a 2 on 1 combined cycle plant
 - Two Siemens Westinghouse 501F CT's with AEROPAC Generators.
 - One GE D11 ST a 324 generator
- The 324 Generator 320,100 kVA; 18 kV; 3600 rpm
- Maintenance outage several months prior to failure
 - Full stator rewedge followed by a DC HiPot
 - No lingering concerns
- In Service Failure Event
 - Ground Fault T2 / T5
 - NEC selected to diagnose and propose repair options

NEC Mobilization

 Early expectation that known issues with the EE end winding and in specific phase straps were at the core of the failure.

- TE end winding discovery identified as likely problem or at least contributor
- Bump testing performed

Inspection

- Bulging and signs of overheating near core and at Series Connection
- Potential issue in series connection possible source of overheating?

Origin of Overheating?

- Connection stripped to investigate.
- No indications of heat generation from the brazed series connection
- Heat effected area indications inboard of the series connection

Origin of Overheating?

- Observation of overheating increased moving toward the core from the Series Connection
- Excavation of the bulge near the core
- Overheating evidence increased in proximity to the conductor stack

Origion of Overheating

- Slot 63 core wedges removed exposing top filler overheating indications.
- Lifting the top filler exposed signific signs of overheating on the top coil.
- Top coil indications extended approximately 4' into the slot from the turbine end with the worst indications between 10" to 18 " from the turbine end of the core.

Probable Origin of Overheating & Point Of Failure

 Most significant burning found 14" from the TE of the core in slot #63

Isolation of Failed Coil #63

Top Coil Slot #63 Isolated from T2 – T5 Phase

- Good winding resistance (megger) testing results.
- Polarization Index (PI) at 10 kV DC.
 - $PI = R_{10min}/R_{1min}$:
 - Phase A PI= $21.7G\Omega/2.70G\Omega = 8.04$
 - Phase B PI= $21.7G\Omega/3.57G\Omega = 6.09$
 - Phase C PI= $15.6 \text{ G}\Omega/3.03\text{G}\Omega = 5.16$
- A ramp test graded DC Hipot was performed on all three phases up to 37 kV DC with leakage measured at 37.0 kV DC:
 - A 4.3 µAmps
 - B 5.0 µAmps
 - C 4.9 µAmps.

Failed Coil #63 Removal

Side Ripple Filler Discovery

- Side Ripple Filler Height
 - Significantly short
- Side Filler Material Preparation
 - Protruding corners, not rounded and/or oriented properly – "Birds Beaking"
 - Bar Abrasion

Coils Removed

- Failed Top Bar Slot #63
- Three Adjacent Top Bars

NEC High Voltage Lab Investigation & Analysis

Failed Coil Arrival - Cracked Strand Discovery WHY?

• Cracks in shipment due to copper hydrogen embrittlement from extreme heat in the generator hydrogen atmosphere

Initial Considerations & Observations

- No signs of electrical aging of ground wall or the bar that could have contributed to the failure mechanism.
- Calculation of the failed bar operational voltage is 5.2 kV AC EE, and 4.5kV AC – TE. The maximum electrical stress did not exceed 35 VPM. Therefore, Corona activity was not a possible contributor, given low electrical stress (voltage) and the pressurized hydrogen environment.
- Extreme overheating of the bar on the TE from the series connection to approximately 48" into the core.

Dissection & Analysis Plan

- Failed Bar #63 was carefully dissected into coupons
- Ground wall and strand insulation carefully analyzed.
 - Strand insulation was completely gone area of failure
 - Strand coupons harvested from non- heat effected area for analysis

Failure Root Cause

Representative sample of strand coupons harvested from nonheat affected areas of failed bar #63

Analysis Conclusions

Root Cause – Shorted Strands:

- Compromised strand insulation of top bar #63
- Compromised strand insulation progressively shorted to adjacent strands, creating severe overheating
- The severe overheating damaged the bar ground wall insulation from the inside adjacent to the shorted strands outward to the bar surface.
- Eventually, ground wall deterioration allowed the ground fault failure.

Actions To Support At Site Repair

Manufacture replacement bar for failed bar #63

- Improved strand insulation
- Maintain loss characteristics of original bar design
- Ensure bar geometry to match winding at site
 - Strip an adjacent bar to aid in mechanical verification of the new bar

Qualify stripped adjacent bar for re-insulation, and process along with the new bar

Autoclave processed single coil VPI

Two remaining adjacent bars utilized to calibrate final mechanical verification

Stator Bar Shorted Strands

- Magnified Failed Strand
 - Single serving Dacron glass
 - Thin serving, no crosshatching
 - Exposed conductor

- Magnified Replacement Strand
 - Double serving Dacron glass
 - Crosshatched increased coverage
 - No exposed conductor

Replacement Bar Manufacturing & Bar Reinsulation

- Replacement bar losses matched original design
- Reinsulated & replacement bar utilized qualified materials and processes
- All bars (replacement, reinsulated, and both adjacent) successfully completed 100% final factory electrical testing and mechanical verification

New Replacement Coil, Reinsulated Coil, & Cleaned Up Coils, Installed

Repairs Complete

Future Considerations & Concerns

- Strand insulation discovery brings into question integrity of both top and bottom remaining bars.
 - Upgraded strand insulation and optimized losses should be part of future rewinds
- Side ripple filler discoveries present risk for ground wall insulation failure of untouched stator slots.

Known 324 Stator Issue Review

- End Winding Material Concern Dry Tie Replacement – TIL 1764
- End Winding Looseness, Resonance, Component Cracking, & Failure
 - TIL's 1965, 1966, & 2417
- Core Compression Band Looseness, Cracking, & Key Bar Rattle
- Core Compression, Looseness, Lamination Movement & Fracture
- Slot Ripple Filler Bar Abrasion
- Bar Strand Insulation Failure

National Electric Coil 2024 All Rights Reserved

Known 324 Rotor Issue Review

- Rotor Forging Dovetail Cracking (TIL 1292)
- Rotor Amortisseur Migration
- Rotor Radial Lead Cracking & Failure
- Rotor Turn Insulation Migration

324 Generator Failure Discoveries, Concerns, & Repair

QUESTIONS

W. Howard Moudy Director of Operations National Electric Coil <u>hmoudy@national-electric-coil.com</u> 724-787-4967 www.National-Electric-Coil.com

